Lebensader und Todesgefahr

In Bergregionen hat das Monitoring von Wasser eine existenzielle Bedeutung.

 

Wasser im Hochgebirge hat viele Gesichter. Gefroren im Boden ist es wie ein Zementfundament, das Hänge stabil hält. Gletschereis und Schnee versorgen in der Schmelzsaison die Flüsse und damit das Vorland mit Wasser zum Trinken und für die Landwirtschaft. Intensive Regengüsse mit Sturzfluten und Hangrutschungen dagegen stellen ein lebensgefährliches Risiko für die Menschen in den Tälern dar. Der Untergrund mit seiner Speicherfähigkeit für Wasser spielt daher eine existenzielle Rolle in Gebirgsregionen.

Wie aber lässt sich in schwer zugänglichen Gebieten ermitteln, wie leer oder voll der Bodenspeicher ist? Forscherinnen und Forscher des Deutschen GeoForschungsZentrums (GFZ) haben jetzt gemeinsam mit Kollegen aus Nepal eine elegante Methode demonstriert, um die Grundwasserdynamik in Hochgebirgen zu verfolgen: Sie nutzen seismische Wellen, wie sie bei Bodenerschütterungen entstehen, die sie mit hoch empfindlichen Messgeräten aufzeichnen. Dabei nutzen sie – ähnlich wie medizinisches Ultraschall – aus, dass sich die Wellen in unterschiedlichem Untergrund unterschiedlich ausbreiten. Die Forschenden um Luc Illien, Christoph Sens-Schönfelder und Christoff Andermann vom GFZ berichten darüber im Fachjournal AGU Advances.

Seismische Wellen sind den meisten von Erdbeben bekannt. Nach einem Bruch im Untergrund breiten sie sich rasant aus und entfalten zerstörerische Kräfte. Es gibt jedoch auch viel kleinere Wellen, die beispielsweise von Lastkraftwagen, Trambahnen oder – im Gebirge – von herabfallendem Gestein verursacht werden. Der Boden vibriert eigentlich ständig. In der Geoforschung spricht man vom „seismischen Rauschen“. Was in der Erdbebendetektion mühsam aus den gemessenen Daten der Erdbebenstationen herausgerechnet werden muss, erweist sich für den Blick in den Untergrund als wertvolle Informationsquelle. Denn seismische Wellen breiten sich in der mit Wasser gesättigten Zone anders aus als in der ungesättigten („vadosen“) Zone.

Der Doktorand Luc Illien vom GFZ nutzte mit seinen Kolleginnen und Kollegen zwei nepalesische Erdbebenmessstationen auf 1200 und 2300 Metern Höhe über dem Meer. Luc Illien sagt: „Der nepalesische Himalaya versorgt einen großen Teil der Bevölkerung Südasiens mit lebenswichtigen Wasserressourcen. Der größte Teil dieses Wassers fließt durch ein Gebirgsgrundwasserreservoir ab, das wir nur schlecht abgrenzen können.“ Das Studiengebiet umfasst einen kleinen Zufluss zum Bothe Koshi, einem Grenzfluss zwischen China und Nepal. Über mehrere Wetterstationen und Pegelmessgeräte erfasste das Team über drei Monsun-Jahreszeiten zum Teil minütlich Daten. Daraus errechneten sie ein Grundwassermodell, das sie mit den seismischen Aufzeichnungen vergleichen konnten. Das Ergebnis: Der Abfluss zum Bothe Koshi wird hauptsächlich aus dem tiefen Grundwasserspeicher gespeist. In der Trockenzeit fließt wenig Wasser talabwärts. Im Monsun steigen die Pegel, aber es lassen sich zwei unterschiedliche Phasen ausmachen. Zunächst regnet es, ohne dass sich der Abfluss erhöht, später jedoch zeigt sich ein deutlicher Zusammenhang zwischen Regenmenge und Flusspegel. Christoff Andermann, Koautor der Studie, erläutert: „Die ersten Niederschläge füllen zunächst oberflächennahen Bodenspeicher wieder auf. Wenn der Boden dann mit Wasser gesättigt ist, füllt sich der tiefe Grundwasserspeicher, welcher direkt an die Flüsse gekoppelt ist. Ein Anstieg im Grundwasser schlägt sich unmittelbar in steigenden Flusswasserstände nieder“.

Der Abgleich mit den Daten der Erdbebenmessgeräte zeigte, dass man aus dem seismischen Rauschen die Sättigung der vadosen Zone gut ableiten kann. „Nur durch die Zusammenführung der hydrologischen Beobachtungen mit den seismischen Messungen ließ sich die Funktion der vadosen Zone als Verbindungsglied zwischen Niederschlag und Grundwasserreservoir analysieren.“ sagt Christoph Sens-Schönfelder. Erstautor Luc Illien: „Zu verstehen, wie sich das Reservoir füllt und abfließt, ist entscheidend für die Beurteilung seiner Nachhaltigkeit. Daraus können wir nicht nur Prognosen für den Abfluss anstellen, sondern auch vor erhöhtem Risiko von Hangrutschungen und Sturzfluten warnen.“ Ist zum Beispiel der Boden bereits gesättigt mit Wasser, fließt Regen vermehrt oberflächlich ab und kann Hänge mitreißen. Der Klimawandel verschärft die Situation, weil er zu Änderungen in den Großwetterlagen und zur Destabilisierung der Bergwelt beiträgt. Der Wissenschaftliche Vorstand des GFZ, Niels Hovius, der an der Studie mitwirkte, sagt: „Unsere Arbeiten in Nepal und deren Ergebnisse zeigen, wie wichtig es ist, zahlreiche Einflussfaktoren zu erfassen. Dazu gehören die Grundwasserspeicher, Änderungen der Landnutzung, der Bodenbedeckung und des Niederschlagsregimes. Solche Änderungen zu erfassen und zu antizipieren hilft uns, die Zukunft der Süßwasserressourcen und der Berglandschaften, insbesondere wenn Gletscher immer weiter schmelzen, besser vorhersagen zu können.“

Originalstudie: L. Illien  C. Andermann  C. Sens‐Schönfelder  K. L. Cook  K. P. Baidya  L. B. Adhikari  N. Hovius: Subsurface Moisture Regulates Himalayan Groundwater Storage and Discharge
Link (open access): https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021AV000398 



Wissenschaftlicher Kontakt:

M. Sc.
Luc Illien

Doktorand
Geomorphologie
Telegrafenberg
Gebäude F, Raum 423
14473
Potsdam
Tel.: +49 331 288 28612

E-mail: lillien@gfz-potsdam.de


Dr. Christoff Andermann

Wissenschaftler
Geomorphologie

Telegrafenberg

Gebäude F, Raum 424
14473
Potsdam
Tel.: +49 331 288 2 88 22

E-mail: christoff.andermann@gfz-potsdam.de

Medienkontakt:
Josef Zens

Leiter der Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288 1040
E-Mail: josef.zens@gfz-potsdam.de

Weitere Meldungen

Deutschlandkarte mit qualitätsgecheckten Datenpunkten, dargestellt als Säulen

Deutschland: Mehr Wärme im Untergrund als bisher angenommen

P. Martinez Garzon in a forest next to a giant split rock

Dr. Patricia Martinez-Garzon gewinnt ERC Starting Grant für ihr Projekt QUAKE-HUNTER

Landkarte der Türkei mit eingezeichnetem Epizentrum des Erdbebens im Nordwesten des Landes

Hintergrund zum heutigen Erdbeben in der Nordwest-Türkei

Topographische Karte der Alpen.

Was treibt die Alpen nach oben?

Gruppenbild des ICDP/IODP Kolloquiums

IODP/ICDP-Kolloquium am GFZ

Lehrkräfte in Hörsaal bei Vortrag

„Extremereignisse im Erdsystem“ – 20. Herbstschule „System Erde“

Zwei junge Forschende stehen vor Bäumen und halten ihre Urkunden, daneben steht Ludwig Stroink, der die Urkunden verliehen hat.

GFZ Friends ehrt Theresa Hennig und Lei Wang mit dem Friedrich-Robert-Helmert-Preis 2022

Satelliten-Aufnahme einer Wüstengegend: Bunte Flecke zeigen verschiedene Minerale.

Deutscher Umweltsatellit EnMAP: Start in den Regelbetrieb

Links ein Messturm in niedrig bewachsener Tundralandschaft.

Mehr Methan aus Sibirien im Sommer

Profilfoto mit schwarzem Rahmen von Henning Francke

Nachruf auf Henning Francke

Gruppenbild des Projektverantwortlichen

Geodaten interoperabel machen und für neugiergetriebene Forschung nutzen: Das Projekt…

Schema Energiebereitstellung durch Geothermie

Europäischer Geothermie-Kongress EGC 2022 in Berlin

Gruppenfoto PAM

Internationaler Kongress zur polaren und alpinen Mikrobiologie

Leni Scheck Wenderoth

"AWG Professional Excellence Award" für Magdalena Scheck-Wenderoth

Ausbildung am GFZ

Berufsausbildung und duales Studium am GFZ

Erd und Erdinneres als Modell

Neues DFG-Schwerpunktprogramm zur Entwicklung der tiefen Erde über geologische Zeiträume

Dr. Ute Weckmann bei der Eröffnungsrede des Workshops

Dr. Ute Weckmann übernimmt den Vorsitz der IAGA Division VI

Anke Neumann auf einem Schlauchboot bei einem Forschungsaufenthalt

Dr. Anke Neumann ist Senior-Humboldt-Forschungsstipendiatin

Logo der Helmholtz Innovation Labs: nur ein Schriftzug

Erfolgreiche Zwischenevaluation der beiden Helmholtz Innovation Labs am GFZ

Schema abtauchender Erdplatten unter dem Ozean mit Wassertransport und der dabei beteiligten Al-Moleküle: So wandert Wasser tiefer in die Erde als bislang angenommen.

Wasser sickert tiefer in die Erde als erwartet

Aus der Luft ein Blick auf die Millionen-Stadt Istanbul und das umgebende Meer.

„Kein Beben kommt aus dem Nichts“

Gruppenfoto von der Verabschiedung von Onno Oncken

Ehrung von Prof. Onno Oncken mit einem wissenschaftlichen Kolloquium

DEUQUA Logo mit Mammut und Friedenstaube

DEUQUA 2022 Konferenz am GFZ

PAW Logo

Postdoc Appreciation Week

Gebäude im Winter aufgenommen, Isaac Newston Institut

Simons Stipendium für Dr. Monika Korte

Die Verteilung der seismischen Stationen auf einer Karte der Region.

Wie tief schläft der Eifel-Vulkanismus?

Geomagnetisches Feld im die Erde. Weltraum mit Sternen, Erde mit Animation herum

GFZ Film unter den Finalisten des Earth Futures Festivals 2022

Strahlungsgürtel der Erde: Hochenergetische Teilchen modelliert um die Erde. Die Teilchen sind ringförmig

Neue Population von Teilchen in den Strahlungsgürteln der Erde

Die teilnehmenden GFZ Mitarbeiter als Gruppenfoto

2. proWissen-Lauf in Potsdam mit erfolgreicher Teilnahme von GFZ-Mitarbeitenden

Die Gruppe am ersten Arbeitstag.

Neue Gesichter am GFZ – Beginn des Ausbildungsjahres 2022/2023

zurück nach oben zum Hauptinhalt