Künstliche Intelligenz lernt kontinentale Hydrologie

Die komplexe Verteilung der kontinentalen Wassermassen in Südamerika wurde mit einer neuen Deep-Learning-Methode aus Satellitendaten bestimmt.

Die komplexe Verteilung der kontinentalen Wassermassen in Südamerika wurde mit einer neuen Deep-Learning-Methode aus Satellitendaten bestimmt.

Mit Hilfe von Satelliten können Veränderungen der auf den Kontinenten gespeicherten Wassermassen erfasst werden. Die dazu notwendigen Datensätze zum Schwerefeld der Erde stammen aus den Satellitenmissionen GRACE und GRACE-FO. Da diese Daten jedoch nur die typischen großskaligen Massenanomalien enthalten, sind zunächst keine unmittelbaren Rückschlüsse auf kleinskalige Strukturen, wie etwa die tatsächliche Verteilung von Wassermassen in Flüssen und Nebenarmen, möglich. Am Beispiel des südamerikanischen Kontinentes entwickelten Erdsystem-ModelliererInnen vom Deutschen GeoForschungsZentrum GFZ nun eine neue Deep-Learning-Methode, mit der sowohl groß- als auch kleinskalige Veränderungen des Wasserspeichers aus Satellitendaten quantifiziert wurden. Neu dabei ist die geschickte Kombination von Deep-Learning, hydrologischen Modellen und Erdbeobachtungen aus Gravimetrie und Altimetrie. Die Studie ist heute in der Fachzeitschrift Geophysical Research Letters erschienen.

Bislang ist nicht genau bekannt, wie viel Wasser ein Kontinent wirklich speichert. Die kontinentalen Wassermassen verändern sich zudem beständig, sie haben dadurch Auswirkungen auf die Erdrotation und sind Bindeglied des Wasserkreislaufes zwischen Atmosphäre und Ozean. Amazonas-Zuflüsse in Peru, beispielsweise, führen in manchen Jahren riesige Wassermengen, in anderen nur einen Bruchteil davon. Neben den Wassermassen der Flüsse und Binnengewässer, finden sich auch im Boden, Schnee und unterirdischen Speichern beträchtliche Wassermengen, die nur schwer direkt quantifiziert werden können.

Das Forscherteam um Erstautor Christopher Irrgang entwickelte nun eine neue Methode, um aus den grob-aufgelösten Satellitendaten Rückschlüsse auf die gespeicherten Wassermengen des südamerikanischen Kontinents zu ziehen. „Für das sogenannte Herunterskalieren nutzen wir ein faltendes neuronales Netzwerk, kurz CNN, in Verbindung mit einer neu entwickelten Trainingsmethode“, sagt Irrgang. „CNNs eignen sich besonders gut für die Verarbeitung räumlicher Erdbeobachtungen, da sie zuverlässig wiederkehrende Muster wie Linien, Kanten, oder komplexere Formen und Merkmale extrahieren können.

Um die Verbindung zwischen kontinentalem Wasserspeicher und entsprechenden Satellitenbeobachtungen zu lernen, wurde das CNN (Convolutional Neural Network) mit Simulationsdaten über den Zeitraum 2003 bis 2018 eines numerischen hydrologischen Modells trainiert. Zusätzlich wurden Daten aus der Satellitenaltimetrie im Amazonasgebiet zur Validierung verwendet. Außergewöhnlich ist, dass sich dieses CNN kontinuierlich selbst verbessert und validiert, um möglichst genaue Aussagen über die Verteilung der Wasserspeicher zu treffen. „Dieses CNN vereint damit die Vorteile der numerischen Modellierung und hochpräziser Erdbeobachtungen“, so Irrgang.

Die Studie der ForscherInnen zeigte, dass die neue Deep-Learning-Methode insbesondere für die tropischen Regionen nördlich des -20. Breitengrades des südamerikanischen Kontinents, wo Regenwälder, ausgedehnte Oberflächengewässer und auch große Grundwasserbecken liegen, sehr verlässlich ist. Ebenso für den grundwasserreichen, westlichen Teil der Südspitze Südamerikas.

In Trocken- und Wüstenregionen funktioniert das Herunterskalieren weniger gut. Erklären lässt sich dies durch die vergleichsweise geringe Variabilität der dort ohnehin geringen Wasserspeicher, welche dementsprechend nur einen marginalen Effekt auf das Training des neuronalen Netzwerkes haben. Für das Amazonasgebiet jedoch konnten die ForscherInnen zeigen, dass die Vorhersage des validierten CNN genauer als das verwendete numerische Modell ist.

In Zukunft werden sowohl großräumige wie auch regionale Analysen und Vorhersagen der globalen kontinentalen Wasserspeicher dringend gebraucht. Die Weiterentwicklung numerischer Modelle und die Kombination mit innovativen Deep-Learning-Methoden werden dabei eine immer wichtigere Rolle spielen, um umfassende Einblicke in die kontinentale Hydrologie zu erhalten. Neben den rein geophysikalischen Untersuchungen ergeben sich vielfältige weitere Anwendungsmöglichkeiten. Es könnte zum Beispiel die Einwirkung des Klimawandels auf die kontinentale Hydrologie untersucht werden. Auch Stressfaktoren für Ökosysteme wie Dürren oder Überflutungen könnten besser identifiziert werden. Darüber hinaus würden derartige Analysen auch die Entwicklung von Wassermanagement-Strategien für landwirtschaftliche und urbane Regionen erleichtern.

Finanzierung:
Diese Studie wurde von der Helmholtz-Gemeinschaft sowie aus dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft durch das Projekt Advanced Earth System Modelling-Kapazität (ESM) finanziert.

Originalstudie: Irrgang, C., Saynisch-Wagner, J., Dill, R., Boergens, E., & Thomas, M. (2020). Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements. Geophysical Research Letters, 47, e2020GL089258.

doi.org/10.1029/2020GL089258

 

Wissenschaftlicher Kontakt:

Dr. Christopher Irrgang
Wissenschaftler in Sektion 1.3 Erdsystem-Modellierung
Helmholtz-Zentrum Potsdam
Deutsches GeoforschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49-331-288-2847
E-Mail: irrgang@gfz-potsdam.de

Medienkontakt:

Josef Zens
Leiter Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288-1040
E-Mail: josef.zens@gfz-potsdam.de

Weitere Meldungen

DEUQUA Logo mit Mammut und Friedenstaube

DEUQUA 2022 Konferenz am GFZ

PAW Logo

Postdoc Appreciation Week

Gebäude im Winter aufgenommen, Isaac Newston Institut

Simons Stipendium für Dr. Monika Korte

Die Verteilung der seismischen Stationen auf einer Karte der Region.

Wie tief schläft der Eifel-Vulkanismus?

Geomagnetisches Feld im die Erde. Weltraum mit Sternen, Erde mit Animation herum

GFZ Film unter den Finalisten des Earth Futures Festivals 2022

Strahlungsgürtel der Erde: Hochenergetische Teilchen modelliert um die Erde. Die Teilchen sind ringförmig

Neue Population von Teilchen in den Strahlungsgürteln der Erde

Die teilnehmenden GFZ Mitarbeiter als Gruppenfoto

2. proWissen-Lauf in Potsdam mit erfolgreicher Teilnahme von GFZ-Mitarbeitenden

Die Gruppe am ersten Arbeitstag.

Neue Gesichter am GFZ – Beginn des Ausbildungsjahres 2022/2023

abgeholzter Wald neben einer Straße

Mehr als 90 Prozent der Abholzung der Tropenwälder ist auf die Landwirtschaft…

Gruppenfoto: Menschen auf der Dachterrasse eines Hauses

2. Internationales Symposium der Internationalen Assoziation für Geodäsie

Foto eines Bergs mit darüber gelegter Skizze des geologischen Profils.

Wie mächtig sollte Ton als Wirtsgestein für ein Endlager sein?

Weiße Punkte unterschhiedlicher Dicke in hexagonalem Muster auf schwarzem Grund.

Synthese von hexagonalem SiGe-Halbleiter mittels hohem Druck und hoher Temperatur

Erdrutsch an einem Abhang direkt an einer Siedlung mit kleinen Häusern.

Erdrutsche bedrohen zunehmend die armen Städte der Welt

In einem Aquarium vermengen sich verschieden farbige Flüssigkeiten. Ein Kind sieht zu.

Aufholen nach Corona: GEOtogether bringt Schüler:innen Freude am gemeinschaftlichen…

Eine Frau und ein Mann stehen auf einer Bühne und halten gemeinsem ein Bild mit einer eingefärbten Landkarte der Türkei.

Vier Jahrzehnte gemeinsame türkisch-deutsche Erdbebenforschung

Egon Althaus um einen Tisch sitzend mit Kollegen draußen im Freien auf einem Projekt

Wir trauern um Egon Althaus (1933-2022)

Ausgetrockneter Stausee.

Überschwemmungen und Dürreperioden nie dagewesenen Ausmaßes

Zeichnung eines fiktiven, historischen Tauchbootes.

Elf Kurzforschungsaufenthalte mit Beteiligung des GFZ gefördert

Bohrplattform auf dem See Junin with mehreren Personen

Tropische Gletscher folgten dem Rhythmus der Ausdehnung des Inlandeises auf der…

Schematische Darstellung des VECTOR-Projektes: Ein großer Pfeil mit verschiedenen Ebenen - von Erdoberfläche bis in den Untergrund.

Effizientere Rohstoff-Exploration in Europa

Hoby Razafindrakoto

Projekt zum Aufbau eines seismologischen Labors in Madagaskar von Dr. Razafindrakoto…

3D Erde digital in der Nacht

Open-Earth-Monitor zur Nutzung von open-source Umweltdaten startet

Der von Überflutung zerschnittene Damm der Steinbachtalsperre in der Eifel.

Hochwasserrisikomanagement nach dem Eifel-Hochwasser im Juli 2021

Gruppenbild der Cermak7 Konferenz vor dem Museum Barberini in Potsdam.

Internationale Wärmestromkonferenz und Workshop in Potsdam

Castor Platform im Ozean. Ruhige See.

Befüllung von geologischen Gaslagerstätten: Ursachenforschung beim wichtigsten Ereignis…

Menschen sitzen in einem Raum auf Stühlen im Kreis.

GFZ PhD-Days

Jeffrey Perez steht vor dem Logo der Tagung

Zwei GFZ-Forschende nehmen an der 71. Lindauer Nobelpreisträgertagung teil

Junge Frau steht mit Urkunde in der Hand in einer Halle vor dem Schriftzug EAGE

Best Paper Award für Evgeniia Martuganova

Vier Personen halten einen großen goldenen Schlüssel vor einem Wohnhaus

Wohnraum für Gastwissenschaftler:innen

Taucher

Förderung der Grundlagenforschung zur festen Erde

zurück nach oben zum Hauptinhalt