Die Melodie eines zerfallenden Alpengipfels

Seismometer belauschen die Eigenschwingung des Hochvogels im Allgäu. Das lässt einzigartige Rückschlüsse auf die Entwicklung eines bevorstehenden Bergsturzes zu.

Quer über den Gipfel des 2592 Meter hohen Hochvogels klafft ein gefährlicher Spalt von fünf Metern Breite und dreißig Metern Länge. Jeden Monat öffnet er sich um knapp einen weiteren halben Zentimeter. Im Laufe der Jahre ist die südliche Seite des Berges schon um mehrere Meter abgesackt; irgendwann droht sie ganz in das österreichische Hornbachtal abzurutschen und 260.000 Kubikmeter Gestein in die Tiefe zu reißen – das entspräche etwa dem Volumen von 260 Eigenheimen. Wann das passieren könnte, war bisher schwer zu beurteilen. Forschende des Helmholtz-Zentrums Potsdam – Deutsches GeoForschungsZentrum GFZ entwickeln für solche Ereignisse nun zusammen mit Kolleg*innen von der TU München eine neue Überwachungsmethode auf Basis seismischer Sensoren. Die Geräte zeichnen die Eigenschwingung des Gipfels auf: Ähnlich wie bei einer mehr oder weniger straff gespannten Geigensaite ändert sich auch die Tonlage des Berges je nach Spannung im Gestein und lässt einzigartige Rückschlüsse auf die Entwicklung eines bevorstehenden Bergsturzes zu. So soll auch eine rechtzeitige Warnung möglich werden – selbst wenn am Hochvogel nicht direkt menschliche Behausungen bedroht sind. Die Studie ist im Fachmagazin „Earth Surface Processes and Landforms“ erschienen.

Felsabbrüche formen die Landschaft

Große Abbrüche von Felshängen passieren immer wieder. Sie spielen eine zentrale Rolle bei der langfristigen Entwicklung von Landschaften. Und sie sind von fundamentalem Interesse, wenn Landnutzungen geplant und Gefahren eingeschätzt werden. Weil sie plötzlich auftreten und dann mit hoher Geschwindigkeit ablaufen, sind solche Felsstürze jedoch schwer zu untersuchen. Klar ist generell, dass sich im Gestein an steilen Hängen etwa durch das Eigengewicht, mechanische Auflast oder Temperaturschwankungen eine Spannung aufbaut, die sich dann in Zerrüttungsprozessen entlädt: Es entstehen Risse auf unterschiedlicher Größenskala. Irgendwann ist das Material so instabil, dass es auseinanderbricht. Während die Abbruchprozesse selbst bereits gut untersucht sind, gibt es für ihre längerfristigen Vorboten noch erhebliche Wissenslücken. Zum einen, weil die Installation permanenter Messgeräte im Hochgebirge schwierig und aufwändig ist. Zum anderen, weil Langzeitmonitoring bislang oft mit Fernerkundungsbildern oder durch punktuell installierte Sensoren erfolgt. Keiner dieser Ansätze konnte die Prozesse im Gestein bisher zeitlich wie räumlich ausreichend detailliert, kontinuierlich und in größerem räumlichen Zusammenhang aufzeichnen.

Neues Monitoring-Verfahren mit Seismometern

Um herauszufinden, wann und warum sich die instabile Felsmasse auf dem Gipfel des Hochvogels bewegt, haben Forschende um Michael Dietze vom GFZ dort im Jahr 2018 ein Netzwerk von sechs Seismometern aufgebaut, jeweils im Abstand von dreißig bis vierzig Metern. Die Geophone zeichneten über drei Monate hinweg auf, mit welcher Frequenz der Berg hin und her schwingt. Wie eine Stimmgabel wird auch massiver Fels durch äußere Anregungen wie Wind und Erschütterungen der Erdkruste in Schwingung versetzt. Dabei hängt seine Frequenz von Faktoren wie Temperatur, Materialbeanspruchung und dem Grad der Zerrüttung des Gesteins ab.

Während des Sommers 2018 konnten die Forschenden einen wiederkehrenden sägezahnartigen Verlauf der Frequenz messen: Immer wieder stieg sie über einen Zeitraum von fünf bis sieben Tagen von 26 auf 29 Hertz an, um dann in weniger als zwei Tagen auf den Ursprungswert abzusacken. Dabei ist der Anstieg der Frequenz mit einem Anstieg der Spannung im Gestein gekoppelt. Mit dem Absacken der Frequenz lassen sich vermehrt seismische Signale versagender Felskontakte messen, wie sie beim Aufbrechen von Gesteinsrissen entstehen. Dieser zyklische Auf- und Abbau von Spannung durch ruckartige Bewegung, auch „stick slip motion“ genannt, ist ein typischer Vorbote drohender Massenabbrüche. Entscheidend dabei: Je näher dieses Ereignis kommt, desto kürzer werden die beobachteten Zyklen, sie sind also ein wichtiger Gefahren-Indikator.

„Mithilfe des seismischen Ansatzes können wir dieses zyklische Phänomen nun erstmals kontinuierlich und fast in Echtzeit erfassen und verarbeiten“, sagt Michael Dietze, am GFZ Post-Doc in der Sektion Geomorphologie. Er arbeitet mit Kolleg*innen von der TU München zusammen, die in dem Projekt AlpSenseBench neben dem Hochvogel auch noch andere Alpengipfel mit diversen Sensoren instrumentiert haben, um Veränderungen in der Felsstabilität zu erfassen. Dietze schätzt, dass es bis zur robusten Serienanwendung seines Verfahrens noch eine Weile dauert: „Aktuell haben wir sozusagen den ‚Proof-of-Concept‘ erbracht, jetzt müssen die Ergebnisse an anderer Stelle wiederholt werden.“ Technisch dürfe das dann keine allzu große Schwierigkeit mehr bedeuten, glaubt Dietze. Und mit der verstärkten Aktivität an den vielen Dreitausendern in den Alpen gebe es auch reichlich Einsatzgebiete.

Ausblick: Rolle von Wasser und Eis in den Klüften

Im Laufe ihrer Messungen, die sich – mit Unterbrechungen aufgrund von Blitzeinschlag – von Juli bis Oktober erstreckten, machten die Forschenden eine weitere interessante Entdeckung: Während der sägezahnartige Auf- und Abbau von Spannungen in den ersten Monaten nach der Schneeschmelze deutlich sichtbar war, kam er im Spätsommer des Dürrejahres 2018 ganz zum Erliegen. Offenbar ging dem Berg im Verlauf des Sommers das dafür notwendige Schmiermittel aus: Wasser. Dann spielte nur noch ein Auf und Ab der Frequenzen im Tagesgang eine Rolle: In den kalten Nachtstunden zieht sich der Fels zusammen, Klüfte werden größer und die Verbindung zum Festgestein lockerer, so dass die Frequenz fällt. Durch die Sonnenwärme wiederum dehnt sich der Fels aus, schließt kleine Klüfte, und erzeugt so eine höhere Schwingungsfrequenz. Wie diese täglichen und die längerfristigen Zyklen ineinander spielen und welchen Einfluss darüber hinaus die frostigen Winter auf das Wasser in tiefen Felsklüften für den Hochvogelgipfel haben, untersuchen die Forschenden nun über zwei weitere Jahre hinweg.

Ein weiteres Seismik-Netzwerk entlang des Hanges hinab in das österreichische Hornbachtal erfasst zudem, welche Folgen die Felsaktivität am Gipfel in diesen Regionen hat. Die Siedlungen dort sind zwar nicht durch die abgehenden Felsmassen gefährdet, gleichwohl ist der Aufstieg zum Gipfel von dieser Seite aus schon seit längerem wegen akuter Steinschlaggefahr gesperrt.

Originalstudie: Dietze, M., Krautblatter, M., Illien, L., Hovius, N (2020). Seismic constraints on rock damaging in a failing mountain peak: the Hochvogel, Allgäu. Earth Surface Processes and Landforms. DOI: 10.1002/esp.5034 

Instagram-Story

Michael Dietze berichtet über seine Messkampagne im Sommer 2018

 

Wissenschaftlicher Kontakt:

Dr. Michael Dietze
Sektion Geomorphologie
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288-28827
E-Mail: Michael.Dietze@gfz-potsdam.de

Medienkontakt:

Dr. Uta Deffke
Referentin Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288-1049
E-Mail: uta.deffke@gfz-potsdam.de

Weitere Meldungen

Lila Flagge wehend über einem Dachgiebel

Interviews anlässlich des „Purple Light Up 2022”

Kondolenzfoto von Kemal Erbas.

Nachruf auf Dr. Kemâl Erbas

Zwei Profilfotos und dazwischen das Logo des BMWK und ein Symbolbild für ein Textdokument

Wichtiges Signal für den Ausbau der Tiefen Geothermie

Deutschlandkarte mit qualitätsgecheckten Datenpunkten, dargestellt als Säulen

Deutschland: Mehr Wärme im Untergrund als bisher angenommen

P. Martinez Garzon in a forest next to a giant split rock

Dr. Patricia Martinez-Garzon gewinnt ERC Starting Grant für ihr Projekt QUAKE-HUNTER

Landkarte der Türkei mit eingezeichnetem Epizentrum des Erdbebens im Nordwesten des Landes

Hintergrund zum heutigen Erdbeben in der Nordwest-Türkei

Topographische Karte der Alpen.

Was treibt die Alpen nach oben?

Gruppenbild des ICDP/IODP Kolloquiums

IODP/ICDP-Kolloquium am GFZ

Lehrkräfte in Hörsaal bei Vortrag

„Extremereignisse im Erdsystem“ – 20. Herbstschule „System Erde“

Zwei junge Forschende stehen vor Bäumen und halten ihre Urkunden, daneben steht Ludwig Stroink, der die Urkunden verliehen hat.

GFZ Friends ehrt Theresa Hennig und Lei Wang mit dem Friedrich-Robert-Helmert-Preis 2022

Satelliten-Aufnahme einer Wüstengegend: Bunte Flecke zeigen verschiedene Minerale.

Deutscher Umweltsatellit EnMAP: Start in den Regelbetrieb

Links ein Messturm in niedrig bewachsener Tundralandschaft.

Mehr Methan aus Sibirien im Sommer

Profilfoto mit schwarzem Rahmen von Henning Francke

Nachruf auf Henning Francke

Gruppenbild des Projektverantwortlichen

Geodaten interoperabel machen und für neugiergetriebene Forschung nutzen: Das Projekt…

Schema Energiebereitstellung durch Geothermie

Europäischer Geothermie-Kongress EGC 2022 in Berlin

Gruppenfoto PAM

Internationaler Kongress zur polaren und alpinen Mikrobiologie

Leni Scheck Wenderoth

"AWG Professional Excellence Award" für Magdalena Scheck-Wenderoth

Ausbildung am GFZ

Berufsausbildung und duales Studium am GFZ

Erd und Erdinneres als Modell

Neues DFG-Schwerpunktprogramm zur Entwicklung der tiefen Erde über geologische Zeiträume

Dr. Ute Weckmann bei der Eröffnungsrede des Workshops

Dr. Ute Weckmann übernimmt den Vorsitz der IAGA Division VI

Anke Neumann auf einem Schlauchboot bei einem Forschungsaufenthalt

Dr. Anke Neumann ist Senior-Humboldt-Forschungsstipendiatin

Logo der Helmholtz Innovation Labs: nur ein Schriftzug

Erfolgreiche Zwischenevaluation der beiden Helmholtz Innovation Labs am GFZ

Schema abtauchender Erdplatten unter dem Ozean mit Wassertransport und der dabei beteiligten Al-Moleküle: So wandert Wasser tiefer in die Erde als bislang angenommen.

Wasser sickert tiefer in die Erde als erwartet

Aus der Luft ein Blick auf die Millionen-Stadt Istanbul und das umgebende Meer.

„Kein Beben kommt aus dem Nichts“

Gruppenfoto von der Verabschiedung von Onno Oncken

Ehrung von Prof. Onno Oncken mit einem wissenschaftlichen Kolloquium

DEUQUA Logo mit Mammut und Friedenstaube

DEUQUA 2022 Konferenz am GFZ

PAW Logo

Postdoc Appreciation Week

Gebäude im Winter aufgenommen, Isaac Newston Institut

Simons Stipendium für Dr. Monika Korte

Die Verteilung der seismischen Stationen auf einer Karte der Region.

Wie tief schläft der Eifel-Vulkanismus?

Geomagnetisches Feld im die Erde. Weltraum mit Sternen, Erde mit Animation herum

GFZ Film unter den Finalisten des Earth Futures Festivals 2022

zurück nach oben zum Hauptinhalt