Magnetic fields on the moon are the remnant of an ancient nuclear dynamo

International simulation study shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Presently, the moon does not have an internal magnetic field as it can be observed on Earth. However, there are localized regions on its surface up to several hundred kilometers in size where a very strong magnetic field prevails. This has been shown by measurements on rocks from the Apollo missions. Since then, research has puzzled about the origin of these magnetic spots. One theory is that they are in some way remnants of an ancient core magnetic field. Possibly similar to what can still be observed on Earth today. Here, the core consists of molten and solid iron and its rotation generates the earth's magnetic field. Why the inner field of the Moon has extinguished at some point remains a subject of research.

Another long discussed theory about the local magnetic spots of the moon suggests that they are the result of magnetization processes caused by impacts of massive bodies on the moon surface. A study recently published in the journal Science Advances now shows, that the Moon must have had an internal core dynamo in the past. The researchers came to their conclusion by disproving this second theory with the help of complex computer simulations. It is the result of a large international cooperation between MIT, GFZ-Potsdam, UCLA, the University of Potsdam, the University of Michigan and the Australian Curtin University.

The second thesis was supported among other things by the fact that large and strong magnetic spots were found on the other side of the moon, exactly opposite large lunar craters. Their origin was assumed to be as follows: Because the Moon - unlike the Earth - has no atmosphere to protect it from meteorites and asteroids, such massive bodies can hit it with full force and pulverize and ionize material on its surface. A cloud of charged particles, also called plasma, created in this way flows around the Moon, compresses the magnetic solar wind present in space and thus strengthens its magnetic field. At the same time, the solar wind induces a magnetic field in the moon itself. At the surface opposite the impact, all these fields are amplified and create the observed magnetism in the crustal rock.

Using the examples of some well-known Moon craters as the one we regard as its “right eye”, the researchers have now simulated the impact including the plasma formation, the propagation of the plasma around the moon and the course of the field induced in the moon's interior. Using software that was originally developed for space physics and space weather applications, they simulated very different impact scenarios. In this way, the scientists were able to show that the amplification of the magnetic fields due to collisions and ejected material alone was not sufficient to generate the large field strengths as originally estimated and measured on the moon: The resulting magnetic field is a thousand times weaker than necessary to explain the observations. This does not mean, however, that these effects do not exist; they are only comparatively weak. In particular, the simulations showed that the field amplification by the plasma cloud on the rear side of the impact is more likely to occur above the crust, and that the magnetic field inside the moon loses much of its energy via dissipation due to turbulence in the mantle and crust.

How exactly the magnetic spots were formed still requires more research. But now it is clear that at some point in time an internal magnetic field of the Moon had to be present for this to happen," says Yuri Shprits, Professor at the University of Potsdam and head of the Magnetospheric Physics Section at GFZ-Potsdam. "In addition, this study can help us to better understand the nature of the dynamo-generated magnetic field and the dynamo process on Earth, the outer planets and exoplanets".

Original study: Was the moon magnetized by impact plasma? Rona Oran, Benjamin P. Weiss, Yuri Shprits, Katarina Milijković, Gábor Tóth, Science Advances 02 Oct 2020: Vol. 6, no. 40, eabb1475, DOI: http://doi.org/10.1126/sciadv.abb1475

Scientific contact:
Prof. Yuri Shprits
Section head Magnetospheric Physics
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Telegrafenberg
14473 Potsdam
Phone: +49 331 288-28899
e-mail: yuri.shprits@gfz-potsdam.de

Media contact:
Dr. Uta Deffke
Public and Media Relations
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Telegrafenberg
14473 Potsdam
Phone: +49 331 288-1049
e-mail: uta.deffke@gfz-potsdam.de

Additional News

Logo of the Helmholtz Innovation Labs: written words only

Successful interim evaluation of the two Helmholtz Innovation Labs at the GFZ

Schematic of plunging Earth plates under the ocean with water transport and the Al molecules involved: This is how water migrates deeper into the Earth than previously assumed.

Water is seeping deeper into Earth than expected

From the air, a view of Istanbul, a city of millions, and the surrounding sea.

"Earthquakes don’t occur out of nowhere"

Group photo with all the people who attended the farewell

Honouring Prof. Onno Oncken with a scientific colloquium

DEUQUA Logo mit Mammut und Friedenstaube

DEUQUA 2022 Tagung am GFZ

PAW Logo

Postdoc Appreciation Week Germany

Building, photo taken in winter, Isaac Newton Institute

Simons Scholarship for Dr Monika Korte

Die Verteilung der seismischen Stationen auf einer Karte der Region.

How deeply does Eifel volcanism sleep?

Geomagnetic Field. Space with stars, Earth with animation around

GFZ film among the finalists of the Earth Futures Festival 2022

Earth's radiation belt: High-energy particles modelled around the Earth. The particles are ring-shaped

A new population of particles in the Earth’s radiation belts

[Translate to English:] Die teilnehmenden GFZ Mitarbeiter als Gruppenfoto

2nd proWissen run in Potsdam with successful participation by GFZ employees

The group on the first day of work.

New faces at the GFZ - start of the training year 2022/2023

Forest vs no forest on two sides of a road

Agriculture drives more than 90% of tropical deforestation

Group photo: people on the roof terrace of a house

2nd International Symposium of International Association of Geodesy’s Commission 4…

[Translate to English:] Foto eines Bergs mit darüber gelegter Skizze des geologischen Profils.

How thick should clay be as a host rock for a repository?

White dots of different thicknesses in a hexagonal pattern on a black ground.

Synthesis of hexagonal SiGe semiconductor using high pressure and temperature

Landslide on a slope directly adjacent to a settlement with small houses.

Landslides increasingly threaten the world's urban poor cities

Different coloured liquids mix in an aquarium. A child watches.

Catching up after Corona: "GEOtogether" brings joy for pupils in collaborative…

A woman and a man stand on a stage holding a picture with a coloured map of Türkiye..

Four decades of joint Turkish-German earthquake research

Egon Althaus sitting around a table with colleagues outside on a project

We mourn the death of Egon Althaus (1933-2022)

A dry dam near Capetown, South Africa.

The challenge of unprecedented floods and droughts in risk management

Drawing of a fictional historical submersible.

Eleven short research stays with GFZ participation funded

Drilling platform on Lake Junin with several people on it

Tropical glaciers followed the rhythm of the ice sheet expansion in the northern…

Schematic representation of the VECTOR project: A large arrow with different levels - from the earth's surface to underground.

Improving the exploration efficiency in Europe

Hoby Razafindrakoto

Project from Dr. Razafindrakoto to create a seismological lab in Madagascar wins ARISE…

3D digital Earth at night

Open-Earth-Monitor getting started

The dam of the Steinbach Dam in the Eifel region, cut by flooding but not destroyed.

Flood risk management after the Eifel flood in July 2021

Group picture of the Cermak7 Conference in front of the Museum Barberini in Potsdam

International heat flow conference and workshop in Potsdam

Castor platform in the ocean. The sea is still.

Filling geological gas reservoirs: Causal research in the most important event of induced…

People sit on chairs in a circle in a room.

GFZ PhD Days

back to top of main content