Life at its Limits

Microbes in the seabed survive on far less energy than has been shown ever before.

Microbes in the seabed survive on far less energy than has been shown ever before

All life needs energy. Where there is not enough energy available, there can be no life. But how much is enough? A new study led by James Bradley of the German Research Centre for Geosciences GFZ and Queen Mary University of London provides a surprising answer: Microbes in the seabed survive on far less energy than has been shown ever before. The international team is publishing its results in the journal Science Advances.

James Bradley, who started this work at the University of Southern California (USA) and continued it at GFZ, says: "When we think about the nature of life on Earth, we see plants, animals, microscopic algae and bacteria thriving on the Earth's surface and in the oceans – constantly active, growing and reproducing. But here we show that an entire biosphere of microorganisms – as many cells as are found in all the Earth's soils or oceans – has barely enough energy to survive. Many of them simply exist in a mostly inactive state. They do not grow, do not divide and do not develop further. These microbes are not dead, but use far less energy than previously thought to survive."

The global inventory and modelling revealed another important finding: Although oxygen is the most important energy source for most familiar life on Earth, it occurs in only 2.7 percent of ocean sediments, they are "oxic". The vast majority is "anoxic". There, microbes produce methane (in 64.3 percent of the sediments), and oxidise sulphate (33 percent of the sediments) as energy sources. Methane is a powerful greenhouse gas, and the study underlines the importance of methane formation on the seabed. Although practically inactive, the microbial cells contained in the Earth's marine sediments are so numerous and survive on such exceptionally long time scales that they act as a major driver of the Earth's carbon and nutrient cycle and even influence the concentration of CO2 in the Earth's atmosphere over thousands to millions of years.

The researchers, including researchers Ewa Burwics and Andrew Dale from GEOMAR - Helmholtz Centre for Marine Research, used data from drill cores worldwide for their work, exploring the last 2.6 million years of Earth history, known as the "Quaternary" period. The data were incorporated into a model that depicts the global availability of energy in the seabed. The researchers then created a global picture of the biosphere beneath the seafloor, including the most important life forms and biogeochemical processes.

By extending the habitable limits of life to environments with lower energy availability, the results could feed into future studies of where, when and how life originated on the early Earth and where life could be found elsewhere in the solar system. The results raise fundamental questions about our definitions of what constitutes life and the limits of life on Earth and elsewhere. With so little available energy, it is unlikely that organisms would be able to reproduce or divide, but instead use this tiny amount of energy for "maintenance" - replacing or repairing their damaged parts. It is therefore likely that many of the microbes found at great depths beneath the seabed are the remains of populations that lived in shallow coastal areas thousands to millions of years ago. Unlike organisms on the Earth's surface that operate on short (daily and seasonal) time scales corresponding to the Sun, it is likely that these deeply buried microbes exist on much longer time scales, such as the movement of tectonic plates and changes in oxygen levels and circulation in the oceans.

"The results of the research challenge not only the nature and limits of life on Earth, but also elsewhere in the universe," Dr. Bradley added. "If there is life on Mars, for example, or on Europa, it would most likely seek refuge underground. If microbes require only a few zeptowatts of power to survive, there could be remnants of surviving life beneath these planets’ icy surfaces. These organisms might have been dormant for a long time, but would still be technically 'alive'. "

Original study: J. A. Bradley, Sandra Arndt, J. P. Amend, E. Burwicz, A. W. Dale, M. Egger, D. E. LaRowe: Widespread energy limitation to life in global subseafloor sediments. In: Science Advances, August 5, 2020

Scientific contact:
James Bradley
Scientist in GFZ Section Interface Geochemistry
& Lecturer at Queen Mary University of London
e-mail: jbradley.earth@gmail.com

Web: jbradleylab.com


Twitter: @DrBradBrad

Media contact:
Josef Zens
Head of Media and Public Relations
e-mail: Josef.Zens@gfz-potsdam.de 
phone: +49(0)331/288-1040

 

Additional News

Logo of the Helmholtz Innovation Labs: written words only

Successful interim evaluation of the two Helmholtz Innovation Labs at the GFZ

Schematic of plunging Earth plates under the ocean with water transport and the Al molecules involved: This is how water migrates deeper into the Earth than previously assumed.

Water is seeping deeper into Earth than expected

From the air, a view of Istanbul, a city of millions, and the surrounding sea.

"Earthquakes don’t occur out of nowhere"

Group photo with all the people who attended the farewell

Honouring Prof. Onno Oncken with a scientific colloquium

DEUQUA Logo mit Mammut und Friedenstaube

DEUQUA 2022 Tagung am GFZ

PAW Logo

Postdoc Appreciation Week Germany

Building, photo taken in winter, Isaac Newton Institute

Simons Scholarship for Dr Monika Korte

Die Verteilung der seismischen Stationen auf einer Karte der Region.

How deeply does Eifel volcanism sleep?

Geomagnetic Field. Space with stars, Earth with animation around

GFZ film among the finalists of the Earth Futures Festival 2022

Earth's radiation belt: High-energy particles modelled around the Earth. The particles are ring-shaped

A new population of particles in the Earth’s radiation belts

[Translate to English:] Die teilnehmenden GFZ Mitarbeiter als Gruppenfoto

2nd proWissen run in Potsdam with successful participation by GFZ employees

The group on the first day of work.

New faces at the GFZ - start of the training year 2022/2023

Forest vs no forest on two sides of a road

Agriculture drives more than 90% of tropical deforestation

Group photo: people on the roof terrace of a house

2nd International Symposium of International Association of Geodesy’s Commission 4…

[Translate to English:] Foto eines Bergs mit darüber gelegter Skizze des geologischen Profils.

How thick should clay be as a host rock for a repository?

White dots of different thicknesses in a hexagonal pattern on a black ground.

Synthesis of hexagonal SiGe semiconductor using high pressure and temperature

Landslide on a slope directly adjacent to a settlement with small houses.

Landslides increasingly threaten the world's urban poor cities

Different coloured liquids mix in an aquarium. A child watches.

Catching up after Corona: "GEOtogether" brings joy for pupils in collaborative…

A woman and a man stand on a stage holding a picture with a coloured map of Türkiye..

Four decades of joint Turkish-German earthquake research

Egon Althaus sitting around a table with colleagues outside on a project

We mourn the death of Egon Althaus (1933-2022)

A dry dam near Capetown, South Africa.

The challenge of unprecedented floods and droughts in risk management

Drawing of a fictional historical submersible.

Eleven short research stays with GFZ participation funded

Drilling platform on Lake Junin with several people on it

Tropical glaciers followed the rhythm of the ice sheet expansion in the northern…

Schematic representation of the VECTOR project: A large arrow with different levels - from the earth's surface to underground.

Improving the exploration efficiency in Europe

Hoby Razafindrakoto

Project from Dr. Razafindrakoto to create a seismological lab in Madagascar wins ARISE…

3D digital Earth at night

Open-Earth-Monitor getting started

The dam of the Steinbach Dam in the Eifel region, cut by flooding but not destroyed.

Flood risk management after the Eifel flood in July 2021

Group picture of the Cermak7 Conference in front of the Museum Barberini in Potsdam

International heat flow conference and workshop in Potsdam

Castor platform in the ocean. The sea is still.

Filling geological gas reservoirs: Causal research in the most important event of induced…

People sit on chairs in a circle in a room.

GFZ PhD Days

back to top of main content