Injection strategies are crucial for geothermal projects

Drilling rig of the geothermal project in Helsinki, Finland. The project aims to supply the university campus with heat from a depth of more than 6 kilometres (Image: G. Dresen)
Drilling rig of the geothermal project in Helsinki, Finland. The project aims to supply the university campus with heat from a depth of more than 6 kilometres (Image: G. Dresen)

Geothermal energy with its significant baseload capacity has long been investigated as a potential complement and long-term replacement for traditional fossil fuels in electricity and heat production. In order to develop deep geothermal reservoirs where there are not enough natural fluid pathways, the formation needs to be hydraulically stimulated. Creation of so called Enhanced Geothermal Systems (EGS) opens fluid flow paths by injecting large quantities of water at elevated pressures. This is typically accompanied by induced seismicity. Some especially large induced earthquakes have led to the termination or suspension of several EGS projects in Europe, such as the deep heat mining projects in Basel and in St. Gallen, both Switzerland. Recently, the occurrence of a MW 5.5 earthquake in 2017 near Pohang, South Korea, has been linked to a nearby located EGS project. As such, there now exists substantial public concern about EGS projects in densely populated areas. Developing new coupled monitoring and injection strategies to minimize the seismic risk is therefore key to safe development of urban geothermal resources and restore public faith in this clean and renewable energy.

In a new study published in Geophysical Research Letters, Bentz and co-workers analyzed the temporal evolution of seismicity and the growth of maximum observed moment magnitudes for a range of past and present stimulation projects. Their results show that the majority of the stimulation campaigns investigated reveal a clear linear relation between injected fluid volume or hydraulic energy and the cumulative seismic moments. For most projects studied, the observations are in good agreement with existing physical models that predict a relation between injected fluid volume and maximum seismic moment of induced events. This suggest that seismicity in most cases results from a stable, pressure-controlled rupture process at least for an extended injection period. This means that induced seismicity and magnitudes could be managed by changes in the injection strategy. Stimulations that reveal unbound increase in seismic moment suggest, that in these cases evolution of seismicity is mainly controlled by regional tectonics. During injection a pressure-controlled rupture may become unstable, with the maximum expected magnitude then being only limited by the size of tectonic faults and fault connectivity. Close near-real-time monitoring of the seismic moment evolution with injected fluid could help to identify stress-controlled stimulations at the early stages of injection or potentially diagnose critical changes in the stimulated system during injection for an immediate reaction in stimulation strategy.

Original study:
Bentz, S. et al., 2020. Seismic Moment Evolution During Hydraulic Stimulations. Geophysical Research Letters. DOI: 10.1029/2019GL086185

Scientific contact:
Stephan Bentz
Section Geomechanics and Scientific Drilling
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Tel.: +49 331 288- 1910

Media contact:
Dipl.-Geogr. Josef Zens
Head of Public and Media Relations
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
14473 Potsdam
Tel.: +49 331 288- 1040
Twitter: @GFZ_Potsdam

Additional News

GFZ donates protective equipment for use in medicine

Minimum operation at GFZ while securing basic services

Personalia | Magdalena Scheck-Wenderoth appointed to the National Monitoring Committee for...

Experimental field "AgriSens DEMMIN 4.0" launched in Mecklenburg-Western Pomerania

Earthquake in Iceland registered via fibre optic telephone cable

Liane Benning named a 2020 “Geochemistry Fellow”

REFLECT data will be included in a European atlas of geothermal fluids

How earthquakes deform gravity

Interview | Elisa Fagiolini about her startup project WaMoS (Water Monitoring from Space)....

Exploitation of ‘unconventional’ geothermal systems in Mexico