GFZ German research centre for geo sciences

Climate dynamic on millenial time scale is affected by changes of ice sheets and of sea level. Both act as loads which deform the solid earth. Vice versa, the deformation affects climate relevant processes in the atmosphere (change in topography), in the ocean (change of bathymetry and coast line) and in the ice sheets (change of sea level at ice margin and bedrock topography).

In response to climate variations, we focus on the numerical modelling of ice-sheet dynamics, assess how the solid earth responses to the respective surface loading and consider, gravitationally consistent, the sea-level change due to mass conservation.

References:

Konrad, H., Sasgen, I., Klemann, V., Thoma, M., Grosfeld, K., Martinec, Z. (2016): Sensitivity of Grounding-Line Dynamics to Viscoelastic Deformation of the Solid-Earth in an Idealized Scenario. -Polarforschung, 85, 2, p. 89-99. | GFZpublic | doi.org/10.2312/polfor.2016.005 | www.polarforschung.de/Inhalt/ | PDF |

Konrad, H., Thoma, M., Sasgen, I., Klemann, V., Grosfeld, K., Barbi, D., Martinec, Z. (2014): The Deformational Response of a Viscoelastic Solid Earth Model Coupled to a Thermomechanical Ice Sheet Model. - Surveys in Geophysics, 35, 6, p. 1441-1458. | GFZpublic | doi.org/10.1007/s10712-013-9257-8 | URI |

Current projects:

 

Link zu Dynamik von Eisschilden

back to top of main content