Sektion 2.8: Magnetosphärenphysik

(GFZ Potsdam)
(GFZ Potsdam)
(GFZ Potsdam)
(GFZ Potsdam)

The near-Earth space environment is hazardous and poses a significant risk for satellites and humans in space. Currently, there are hundreds of operational commercial satellites with a revenue stream of tens of billions of dollars per year. There are also a number of other satellites that assist in navigation, weather prediction, and telecommunication.  Frequent satellite failures caused by space weather have fueled a surge in interest with specification and prediction of space weather during the last decade.

Our section is working on understanding of the dynamical evolution of the hazardous space radiation environment and developing the tools for specification and prediction of the adverse effects of space environment using models and data assimilation. We study fundamental processes in the near-Earth environment and focus on understanding fundamental processes responsible for the evolution of space radiation. Our research will help safely design and operate satellites and maintain ground networks. In our research we try to bridge our theoretical studies with high performance computing to develop tools that can be used by engineers.

Below you can find more details on the main areas of research in our section:

Radiation Belt Modelling

(GFZ Potsdam)

Data Assimilation

(GFZ Potsdam)

Machine Learning

(GFZ Potsdam)

Ring Current Modelling

(GFZ Potsdam)

Irina Zhelavskaya: Invited talk

September 2017

"Empirical modeling of the plasmasphere dynamics using neural networks",

Space Weather: A Multi-Disciplinary Approach Workshop at the Lorentz Center, September 25-29, 2017, Leiden, the Netherlands.

Irina Zhelavskaya: Invited talk

August 2017

"Deriving electron density from electric field measurements on the Van Allen Probes spacecraft and building a global dynamic model of plasma density using neural networks"

IAPSO-IAMAS-IAGA 2017, August 27 - September 1, 2017, Cape Town, South Africa.

Irina Zhelavskaya: Award for the best student poster presentation

June 2017

"Empirical modeling of the plasmasphere dynamics using neural networks"

 GEM 2017 Summer Workshop, June 18-23, 2017, Portsmouth, VA, USA.

Irina Zhelavskaya: Invited talk

May 2017

"Empirical modeling of the plasmasphere with neural networks"

POF PT I Workshop: From Atmosphere to Space Weather, May 30, 2017, Potsdam, Germany.

Juan Sebastian Cervantes Villa: Best EGU poster at GFZ 12th PhD day in April 2017

April 2017

”Three-dimensional data assimilation and reanalysis of radiation belt electrons”.

Irina Zhelavskaya: Award for the best student oral presentation

March 2017

 "Global dynamic evolution of the cold plasma inferred with neural networks", DGG 2017, March 27-30, 2017, Potsdam, Germany.

Gefahr für Satelliten richtig einschätzen

28. Dezember 2016

Die Vorhersage des Weltraumwetters hängt entscheidend von der Qualität der Modellierung ab. Forscher vom GFZ zeigen, dass fehlerhafte Algorithmen zu gravierenden Fehleinschätzungen führen können. Sie präsentieren einen neuen Algorithmus, der geeignet ist, das Geschehen im geosynchronen Orbit zuverlässig zu modellieren. Das ist besonders für die Sicherheit von Satelliten wichtig.

Der perfekte Sonnensturm

28. September 2016

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden. „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erschien am Mittwoch, 28. September, in Nature Communications.

Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

1. Oktober 2016

A geomagnetic storm on January 17, 2013, provided unique observations that finally resolved a long-standing scientific problem.

Dr. Tatiana Podladchikova Awarded International Alexander Chizhevsky Medal

8. Januar 2016

January 8, 2016 1:18 am: Applied Mathematician Dr. Tatiana Podladchikova was awarded the International Alexander Chizhevsky Medal at the 12th European Space Weather Week, for major results in space weather.

Zebra stripes in space resolves a half-century mystery

27. Juli 2015

This structure is pretty close to the Earth, which is important because people want to understand the environment where satellites operate. Usually plasma undergoes a number of different instabilities, and waves tend to move from one region in space to another, so everything you see is noisy, very short-lived, and on smaller scales. But this structure seems to be very persistent, highly coherent in space, and was remarkably organized and structured, which we didn’t know could exist to such high degree.

Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts

29. September 2013

RBM group scientists have successfully modeled and explained the unprecedented behavior of this third ring, showing that the extremely energetic particles that made up this ring, known as ultra-relativistic electrons, are driven by very different physics than typically observed Van Allen radiation belt particles. The region the belts occupy—ranging from about 1,000 to 50,000 kilometers above the Earth’s surface—is filled with electrons so energetic they move close to the speed of light.

‘Dropout’ Electrons Get Pushed out of Van Allen Belt

1. Februar 2012

UCLA researchers showed that the missing electrons are swept away from the planet by a tide of solar wind particles during periods of heightened solar activity. The data show that while a small amount of the missing energetic electrons did fall into the atmosphere, the vast majority was pushed away from the planet, stripped away from the radiation belt by the onslaught of solar wind particles during the heightened solar activity that generated the magnetic storm itself.

Yuri Shprits
Sektionsleiter
Prof. Dr.Yuri Shprits
Magnetosphärenphysik
Behlertstraße 3a
Gebäude K 3, Raum 012
14467Potsdam
+49 331 288-28899
Zum Profil
Assistenz
Martina Krüger
Magnetosphärenphysik
Zum Profil
zur Übersicht