Sektion 2.8: Magnetosphärenphysik

Neue Theorie zur Entstehung der Saturn-Strahlungsgürtel

 29. November 2018

Um den Saturn und andere Planeten einschließlich der Erde sind energiereiche geladene Teilchen in Magnetfeldern gefangen, die von den Planeten selbst erzeugt werden. Die Teilchen ordnen sich in Donut-förmigen Zonen an, die als Strahlungsgürtel bezeichnet werden. Ein Beispiel ist der Van-Allen-Gürtel um die Erde, wo sich Elektronen mit nahezu Lichtgeschwindigkeit bewegen.

Irina Zhelavskaya Awarded 2018 Outstanding Student Poster and PICO (OSPP) Awards

April 2018

Systematic analysis of machine learning techniques for Kp prediction in the framework of the H2020 project ‘SWAMI’ (Zhelavskaya, I.; Shprits, Y.; Vasile, R.; Stolle, C.; Matzka, J.)

Click here to download the poster/PICO file.

Mehr erfahren

Millionenfache Verstärkung elektromagnetischer Wellen nahe Jupiter-Mond Ganymed

7. August 2018

Wer den elektromagnetischen Wellen lauscht, die die Erde umgeben, kommt sich vor wie an einem knisternden Lagerfeuer am frühen Morgen, wenn die Vögel erwachen. Es prasselt, zischt und zwitschert und zirpt, wenn die Wellen in Töne umgewandelt werden. Darum heißen diese Wellen auch „Chorwellen“ („chorus waves“). Sie verursachen nicht nur Polarlichter, sondern können Elektronen so sehr beschleunigen, dass diese Satelliten beschädigen. In einer aktuellen Studie, die in Nature Communications erscheinen wird, beschreiben Forscher außergewöhnliche „chorus waves“ um andere Planeten unseres Sonnensystems.

Wie verschwinden rasend schnelle Elektronen?

21. Dezember 2017

Studie aus Potsdam klärt Vorgänge in den „Van-Allen-Strahlungsgürteln“ auf – Wichtig für Satelliten und die Astrophysik.

Gefahr für Satelliten richtig einschätzen

28. Dezember 2016

Die Vorhersage des Weltraumwetters hängt entscheidend von der Qualität der Modellierung ab. Forscher vom GFZ zeigen, dass fehlerhafte Algorithmen zu gravierenden Fehleinschätzungen führen können. Sie präsentieren einen neuen Algorithmus, der geeignet ist, das Geschehen im geosynchronen Orbit zuverlässig zu modellieren. Das ist besonders für die Sicherheit von Satelliten wichtig.

Personalia | Yuri Shprits folgt Ruf an die Universität Potsdam

8. November 2016

Am 24. Oktober wurde Yuri Shprits, Leiter der Arbeitsgruppe „Magnetosphärenphysik“ in der GFZ-Sektion Erdmagnetfeld, zum Professor an die Universität Potsdam, Institut für Physik und Astronomie, berufen. Shprits konnte zum 1. März 2016 im Rahmen der ...

Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

1. Oktober 2016

A geomagnetic storm on January 17, 2013, provided unique observations that finally resolved a long-standing scientific problem.

Der perfekte Sonnensturm

28. September 2016

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden. „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erschien am Mittwoch, 28. September, in Nature Communications.

Dr. Tatiana Podladchikova Awarded International Alexander Chizhevsky Medal

January 8, 2016

8. January 2016 1:18 am: Applied Mathematician Dr. Tatiana Podladchikova was awarded the International Alexander Chizhevsky Medal at the 12th European Space Weather Week, for major results in space weather.

Zebra stripes in space resolves a half-century mystery

27. Juli 2015

This structure is pretty close to the Earth, which is important because people want to understand the environment where satellites operate. Usually plasma undergoes a number of different instabilities, and waves tend to move from one region in space to another, so everything you see is noisy, very short-lived, and on smaller scales. But this structure seems to be very persistent, highly coherent in space, and was remarkably organized and structured, which we didn’t know could exist to such high degree.

Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts

29. September 2013

RBM group scientists have successfully modeled and explained the unprecedented behavior of this third ring, showing that the extremely energetic particles that made up this ring, known as ultra-relativistic electrons, are driven by very different physics than typically observed Van Allen radiation belt particles. The region the belts occupy—ranging from about 1,000 to 50,000 kilometers above the Earth’s surface—is filled with electrons so energetic they move close to the speed of light.

‘Dropout’ Electrons Get Pushed out of Van Allen Belt

1. Februar 2012

UCLA researchers showed that the missing electrons are swept away from the planet by a tide of solar wind particles during periods of heightened solar activity. The data show that while a small amount of the missing energetic electrons did fall into the atmosphere, the vast majority was pushed away from the planet, stripped away from the radiation belt by the onslaught of solar wind particles during the heightened solar activity that generated the magnetic storm itself.

Irina Zhelavskaya: Invited talk

September 2017

"Empirical modeling of the plasmasphere dynamics using neural networks",

Space Weather: A Multi-Disciplinary Approach Workshop at the Lorentz Center, September 25-29, 2017, Leiden, the Netherlands.

Irina Zhelavskaya: Invited talk

August 2017

 "Deriving electron density from electric field measurements on the Van Allen Probes spacecraft and building a global dynamic model of plasma density using neural networks"

IAPSO-IAMAS-IAGA 2017, August 27 - September 1, 2017, Cape Town, South Africa.

Irina Zhelavskaya: Award for the best student poster presentation

June 2017

 "Empirical modeling of the plasmasphere dynamics using neural networks"

 GEM 2017 Summer Workshop, June 18-23, 2017, Portsmouth, VA, USA.

Irina Zhelavskaya: Invited talk

May 2017

"Empirical modeling of the plasmasphere with neural networks"

POF PT I Workshop: From Atmosphere to Space Weather, May 30, 2017, Potsdam, Germany.

Juan Sebastian Cervantes Villa: Best EGU poster at GFZ 12th PhD day in April 2017

April 2017

 

”Three-dimensional data assimilation and reanalysis of radiation belt electrons”.

Irina Zhelavskaya: Award for the best student oral presentation

March 2017

 

 "Global dynamic evolution of the cold plasma inferred with neural networks", DGG 2017, March 27-30, 2017, Potsdam, Germany.

(GFZ Potsdam)
(GFZ Potsdam)
(GFZ Potsdam)
(GFZ Potsdam)

The near-Earth space environment is hazardous and poses a significant risk for satellites and humans in space. Currently, there are hundreds of operational commercial satellites with a revenue stream of tens of billions of dollars per year. There are also a number of other satellites that assist in navigation, weather prediction, and telecommunication.  Frequent satellite failures caused by space weather have fueled a surge in interest with specification and prediction of space weather during the last decade.

Our section is working on understanding of the dynamical evolution of the hazardous space radiation environment and developing the tools for specification and prediction of the adverse effects of space environment using models and data assimilation. We study fundamental processes in the near-Earth environment and focus on understanding fundamental processes responsible for the evolution of space radiation. Our research will help safely design and operate satellites and maintain ground networks. In our research we try to bridge our theoretical studies with high performance computing to develop tools that can be used by engineers.

Below you can find more details on the main areas of research in our section:

Radiation Belt Modelling

(GFZ Potsdam)

Earth’s radiation belts consist of highly energetic protons and electrons trapped by Earth’s magnetic field in the region of 1.2~8 Re (Earth radii) away from Earth’s center, which can be hazardous for satellite equipment. Our group uses modelling approaches to better understand the dynamic evolution of the outer radiation belts. Specifically, we have developed physics-based 3D and 4D Versatile Electron Radiation Belt (VERB) codes to help us understand important mechanisms controlling the dynamic evolution of radiation belts, such as radial diffusion, local acceleration, local loss, magnetopause shadowing and electric convection.

More details

Data Assimilation

(GFZ Potsdam)

Analysis of radiation belt observations present a major challenge, as satellite observations are often incomplete, inaccurate and have only limited spatial coverage. Nevertheless, through data assimilation observations can be blended with information from physics-based models, in order to fill gaps and lead to a better understanding of the underlying dynamical processes. We have developed a scheme that enables efficient data assimilation from multiple satellite missions into the state-of-the-art partial differential equation-based model of the inner magnetosphere Versatile Electron Radiation Belt (VERB-3D).

More details

Machine Learning

(GFZ Potsdam)

Machine learning (ML) methods and algorithms can be applied to space weather related problems in order to develop new data-driven models of different physical phenomena in space and to enhance existing physics-based models. In our group, we use ML algorithms to develop predictive models of electron density in the plasmasphere and Kp index, and use these models to enhance our radiation belt forecasts.

More details

Ring Current Modelling

(GFZ Potsdam)

The ring current is an electric current encircling the Earth at the distances between ~3 and ~5 Earth’s radii from the center of the Earth in the equatorial plane. It is a crucial component in our understanding of the magnetosphere dynamics and geomagnetic storms, and it can also affect human infrastructures such as high-latitude power grids or currently operating communication or navigation satellites. In our group, we use the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code to model the dynamics of the ring current.

More details

Yuri Shprits
Sektionsleiter
Prof. Dr. Yuri Shprits
Magnetosphärenphysik
Behlertstraße 3a
Gebäude ME, Raum 23
14467 Potsdam
+49 331 288-28899
Zum Profil
Assistenz
Martina Krüger
Magnetosphärenphysik
Zum Profil