Meldungen

Voraussetzungen für Leben schon vor 3,5 Milliarden Jahren

Abbildung 1: Gasreiche Flüssigkeitseinschlüsse, die CO2 (Kohlendioxid) und CH4 (Methan) enthalten, wurden während des Kristallwachstums in Wirtsmineralien (hier Quarz) eingeschlossen. ©Lüders, Volker
Abbildung 2: Mit einer am GFZ entwickelten Methode für simultane Messungen von Isotopenverhältnissen von Kohlenstoff- und Stickstoff in geringen Gasmengen, können die Gase aus Flüssigkeitseinschlüssen analysiert werden. (Foto: Volker Lüders)

Mikrobielles Leben hatte auf unserem Planeten bereits vor 3,5 Milliarden Jahren die nötigen Rahmenbedingungen, um zu existieren. Zu dieser Erkenntnis kam ein Forschungsteam nach Untersuchungen mikroskopisch kleiner Flüssigkeitseinschlüsse in Bariumsulfat (Baryt) aus der Dresser Mine in Marble Bar, Australien. In ihrer Publikation „Ingredients for microbial life preserved in 3.5-billion-year-old fluid inclusions” legen die Forschenden dar, dass es bereits zu diesem Zeitpunkt organische Kohlenstoffverbindungen gegeben hat, die als Nährstoffe für mikrobielles Leben dienen konnten. An der im Fachmagazin „Nature Communications“ erschienenen Studie des Erstautors Helge Mißbach von der Universität Göttingen war auch Volker Lüders  vom Deutschen GeoForschungsZentrum (GFZ) beteiligt. Er hat in der Sektion Organische Geochemie Kohlenstoff-Isotopenanalysen an Gasen in Flüssigkeitseinschlüssen durchgeführt.

Flüssigkeitseinschlüsse zeigen Potenzial für urzeitliches Leben
Lüders bewertet die Resultate als überraschend, warnt aber davor, diese fehlzuinterpretieren: „Man darf die Studienergebnisse nicht als direkten Nachweis für frühes Leben verstehen“, sagt der GFZ-Forscher. Die Befunde an den 3,5 Milliarden Jahre alten Flüssigkeiten zeigten vielmehr, dass damals bereits Potenzial für urzeitliches Leben vorhanden war. Ob zu dieser Zeit daraus bereits tatsächlich Leben entstand, lässt sich nicht bestimmen. Anhand der Ergebnisse wisse man nun aber einen „Zeitpunkt, von dem wir sagen können, es wäre möglich gewesen“, erklärt Lüders.

Australische Baryte als Geo-Archive
Das Forschungsteam hat Flüssigkeitseinschlüsse in australischen Baryten umfassend auf Bildungsbedingungen (Druck, Temperatur und Lösungszusammensetzung), Biosignaturen und Kohlenstoffisotope analysiert. Flüssigkeitseinschlüsse in Mineralen sind mikroskopisch kleine Geoarchive für die Migration von heißen Lösungen und Gasen in der Erdkruste. Primäre Flüssigkeitseinschlüsse wurden direkt während des Mineralwachstums gebildet und liefern wichtige Hinweise über die Bedingungen, unter denen sie entstanden sind. Neben einer wässrigen Phase können Flüssigkeitseinschlüsse auch Gase enthalten, deren Chemie für Milliarden von Jahren bestehen bleiben kann. Die in dieser Studie untersuchten Flüssigkeitseinschlüsse wurden während der Kristallisation der Wirtsminerale eingeschlossen. Im Zuge der Analysen stellte sich heraus, dass sie einen primordialen Stoffwechsel enthielten – und damit Energielieferanten für Leben. Die Ergebnisse von Lüders‘ Kohlenstoff-Isotopenanalyse lieferten dabei zusätzliche Hinweise auf unterschiedliche Kohlenstoffquellen. Während die gasreichen Einschlüsse von grauen Baryten Spuren von magmatischem, also anorganischem Kohlenstoff enthielten, konnten in den Fluideinschlüssen von schwarzen Baryten deutliche Hinweise auf eine organische Herkunft des Kohlenstoffs gefunden werden.

Anschlussforschung ist möglich
„Die Studie kann hohe Wellen schlagen“, sagt Lüders. Organische Moleküle dieser Art wurden für Flüssigkeitseinschlüsse in archaischen Mineralen noch nicht nachgewiesen. Zugleich jedoch sei die Studie nur ein erster Schritt. Lüders sagt: „Die immer höhere Empfindlichkeit der Messgeräte wird der Untersuchung von festen und flüssigen Mikroeinschlüssen in Mineralen neue Tore öffnen. Messungen von Biosignaturen und Isotopenverhältnissen dürften in naher Zukunft immer exakter werden.“

Originalstudie:
Mißbach, H., Duda, JP., van den Kerkhof, A.M. et al. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat Commun 12, 1101 (2021). https://doi.org/10.1038/s41467-021-21323-z

 

Wissenschaftlicher Kontakt:
Dr. Volker Lüders  
Wissenschaftler
Sektion Organische Geochemie
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288-1434
E-Mail: volker.lueders@gfz-potsdam.de

Medienkontakte:
Christoph Schmidt
Praktikant Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
E-Mail: christoph.schmidt@gfz-potsdam.de

Dr. Uta Deffke  
Referentin Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam
Deutsches GeoForschungsZentrum GFZ
Telegrafenberg
14473 Potsdam
Tel.: +49 331 288-1049
E-Mail: uta.deffke@gfz-potsdam.de

Weitere Meldungen

Eisalgen verstärken Grönlands Eisschmelze – genährt von Phosphor

Diamanten brauchen Spannung

Schnellere Erdbebenfrühwarnung mit Künstlicher Intelligenz

Fragen und Antworten zum Erdbeben in Kroatien

Die Melodie eines zerfallenden Alpengipfels

Geothermische Exploration mit Glasfaserseismik in Potsdam

Frühwarnsystem für gefährdete Staudämme

Stress im Untergrund besser berechnen

Wie heiß darf es sein für das Leben im Ozeanboden?

Erdbeben-Szenario für deutsche Großstadt