Analogmodellierung
bivergenter Akkretionskeile

Stephanie Teuber, 6330774
eingereicht am Fachbereich
Geowissenschaften
an der Universität Hamburg
Arbeit zur Erlangung des
Bachelor of Science
am 29.09.2014

Erstprüfer: Prof. Dr. Ulrich Riller
Zweitprüfer: Dr. Moritz Kirsch
Analogmodellierung
bivergenter Akkretionskeile
Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei Allen bedanken, die diese Bachelorarbeit ermöglicht haben. Sie haben mich über den gesamten Prozess begleitet und mir mit Rat und Tat zur Seite gestanden.

Mein spezieller Dank gilt vorallem Prof. Dr. Ulrich Riller und Dr. Moritz Kirsch, für die freundliche Übernahme des Gutachteramtes, einschließlich der engagierten Betreuung.

Für die interessante und schöne Zeit am GeoForschungsZentrum (GFZ) in Potsdam möchte ich mich in besonderem Maße bei Tasca Santimano, Malte Ritter und Matthias Rosenau bedanken.

Nicht zuletzt gilt mein Dank ebenfalls all jenen, die mich während des Studiums unterstützt haben, insbesondere meiner Familie und meinen Freunden.

Vielen Dank!
# Inhalt

Danksagung .......................................................................................................................... 2

Zusammenfassung .................................................................................................................. 4

Abstract .................................................................................................................................. 4

I. Einleitung ............................................................................................................................ 5

II. Akkretionskeile .................................................................................................................. 6

   II.1 Bildung von Akkretionskeilen ..................................................................................... 7

III. Analogmodellierung .......................................................................................................... 13

   III.1 Theorie der kritischen Keilbildung ............................................................................ 14

   III.2 Materialumgang ......................................................................................................... 17

IV. Materialien und Methoden ............................................................................................... 19

   IV.1 Sandbox ...................................................................................................................... 19

   IV.2 Materialien .................................................................................................................. 20

   IV.3 PIV und Software ....................................................................................................... 21

V. Aufbau und Durchführung der Experimente .................................................................. 25

   V.1 Experimentdurchführung .............................................................................................. 26

VI. Ergebnisse ......................................................................................................................... 28

   VI.1 Keilgeometrie ............................................................................................................. 30

   VI.2 Störungszonengeometrie ........................................................................................... 35

VII. Interpretation ................................................................................................................... 42

   VII.1 Keilentwicklung ........................................................................................................ 42

   VII.2 Störungszonenentwicklung .................................................................................... 43

   VII.3 Sensibilität und Reproduzierbarkeit ....................................................................... 44

Literatur ................................................................................................................................... 46

Abbildungen .......................................................................................................................... 48

Anhang ..................................................................................................................................... 51
Zusammenfassung


Abstract

Aim of this thesis is to attain a more profound knowledge of the kinematic and geometric evolution of bivergent wedges via analogue modeling. Therefore eleven 2D-experiments with varying materials (sand and glassbeads) are arranged. The results indicate that wedges built of sand are more narrow and vertical thicker than those containing glassbeads. In addition sand as analogue material leads to closely spaced, steep dipping and asymmetrical-styled faults. These observations can be explained by the influence of the material on basal friction. A more brittle behaviour of the material yields a higher basal friction. This thesis shows also a relatively sensitivity of the experiments on outside influences. However the potential of reproducibility of the experiments is high as far as the conditions, under which performed, were kept constant.