mseedrename(1)

Name

mseedrename - systematically rename miniSEED files using a template

Synopsis

mseedrename [--dry-run] [-v|--verbose]
[--template=FILENAME] [--output-dir=DIRECTORY]
[--force-overwrite] [--transfer-mode=MODE]
[--include-pattern=PATTERN]...
file | directory...

mseedrename [-h |--help] [--version] [--sysinfo]

Description

Mseedrename systematically renames the given (miniSEED) files using a user provided NAME
template. If directories are given at the command line, mseedrename searches recursively for files
inside those directories applying the template to each file found.

When processing files, mseedrename will read the first miniSEED record contained in the source
file. From this record information about recording start time, station id, etc. is obtained. This
information is used when interpreting the NAME template, replacing each variable found by its
corresponding value. The new filename then is constructed from the interpreted NAME template
and the DIRECTORY given by the --output-dir option (if available). Finally, the source file is copied
or moved to its new destination depending on the --transfer-mode option.

Obviously, the capability to replace variables in the NAME template depends on the information
that can be obtained from the source file in the first place. If the source is not a miniSEED file and
therefore cannot provide the necessary information replacing most template keywords must fail!
So, in addition to using the first record of a miniSEED file as source of information, the program
also can obtain at least some (but not all) variable values from the filename of the source file. This
fallback mechanism is used when the source is not a miniSEED file but its filename follows the
pattern "eNNNNYYMMDDHHMMSS.*". Here, the letter e followed by four digits NNNN is used as
station id, YYMMDD represents the date and HHMMSS the time. (Note: Almost all files generated by
GIPP EDLs follow this convention.)

Options

The program pretty much follows expected Unix command line syntax. Some of the command line
options have two variants, one long and an additional short one (for convenience). These are

shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the mseedrename release information and exit.

--sysinfo

Provide some basic system information and exit.

--dry-run
Perform a trial run with no changes and modifications made whatsoever to the file system while
at the same time producing (almost) the same user feedback as a real run. It is most commonly
used in combination with the --verbose options to see what an mseedrename command is
about to do before one actually runs it for real.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) mseedrename only reports warnings and errors.
(See the diagnostics section below.)

--template=FILENAME

The given FILENAME template controls the automatic generation of the new filename. Here,
every character of FILENAME is used for the new filename with the exception of the following
variables. They are interpreted and replaced with their corresponding value (taken from the
currently processed input file). The following keys are possible:

%%

a literal % character

%f

original filename (including suffix)

%b

basename (i.e. filename without suffix)

%e

extension (filename suffix without the dot)

%Y

year (including century, i.e. 4 digits)

Y%y

year (without century, i.e. 2 digits)

%m

month (2 digits)

%d
day (of month, 2 digits)

%j
day of year (3 digits)

%H
hour (2 digits)

%M

minute (2 digits)

%s

second (2 digits)

%T

complete time (equivalent to %H:%M:%S)

%F

complete date (equivalent to %Y-%m-%d)

%G
GEOFON style (equivalent to %Y/%S/%j/%{)

%S

miniSEED station id (up to 5 characters)

%L

miniSEED location id (up to 2 characters)

%C

miniSEED channel id (up to 3 characters)

%N

miniSEED network id (up to 2 characters)

%r

miniSEED sample rate (rounded to the closest integer number)

Please note that usage of / characters is explicitly allowed in the filename template indicating
additional subdirectory levels. The respective directories will automatically be created as
needed. Variables containing time information are read from the first miniSEED record in the
file and usually represent the start time of the recording in that file.

If no filename template is given at the command line, the filename keyword ("%f") is used as

default. This will collapse any complex directory tree used as input into a single flat output
directory.)

You will run into trouble when you try to rename a non-miniSEED file using a
keyword only available for miniSEED files (e.g. the network id "%N"). Since a

° non-miniSEED source file simply cannot provide the network id required to
replace the "%N" keyword in the template string the rename operation must
fail!

--output-dir=DIRECTORY

Use DIRECTORY as a starting point for all paths and filenames that were generated from the
filename template (see option --template described above). The directory must exist and be
writable! If this option is not used, the current working directory of the user will be used as
starting point instead.

Already existing files will not be overwritten unless the option --force-overwrite is used as well.

The rule that resulting filenames are always relative to the output DIRECTORY
or the users current working directory is meant to protect you from
o accidentally overwriting system files. Please note however that there is no
guarantee! The mechanism could be easily circumvented by e.g. fooling around
with symbolic links or using dot-dot components ("..") in the filename template.

--force-overwrite

If this option is used, already existing files will be overwritten without mercy! The default
behavior however is not to overwrite existing files and to simply skip processing the
corresponding input file.

--transfer-mode=MODE
Select the file transfer mode. Here MODE can be one of the following:

COPY
Copy files and do not modify the source. This is the default mode.

MOVE

Move files, deleting already transferred source files in the process. Only successfully
transferred files will be deleted. The source directory tree (even if the remaining directories
are empty) is not touched. This mode is mostly intended for situations where you are
desperately short on disk space.

(r) Use the MOVE mode only if you are very sure that there will be no problems
- (e.g. by first testing the command using the --dry-run option).

--include-pattern=PATTERN

Only process files whose filename matches the given PATTERN. Files with a name not matching
the search PATTERN will be ignored. This option is quite useful to speed up recursive searches
for input files through large subdirectory trees and can be used more than once in the same

command line.

You can use the two wild card characters (* ?) when specifying a PATTERN (e.g. *pri?). Or
alternatively, you can also use a predefined filter called GIPP that can be used exclude all files
not following the usual GIPP naming convention for miniSEED files recorded by Earth Data
loggers (e.g. message logging or status files).

é The search PATTERN is only applied to the filename part and not to the full
pathname of a file.

Environment

The following environment variables can optionally be used to influence the behavior of the
various GIPPtool utilities during startup.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

Diagnostics

Mseedrename occasional will produce user feedback. In general, user messages are classified as
INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose command
line option is used. They usually report about the progress of the program run, give statistical
information or write a final summary.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the outcome. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

http://www.earthdata.co.uk

A good method to see what will happen is to use the --dry-run and the --verbose command line
option at the same time. If the user feedback indicates that mseedrename works as expected it can
be started again, this time without the --dry-run option.

EXxit codes

Use the following program exit codes when calling mseedrename from scripts or other programs
to see if mseedrename finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

66

An input file did not exist or was not readable.

74

I/O error.

99

Other, unspecified errors.

Examples

1. You have a hundreds of miniSEED files in a single unsorted directory and would like to sort
them by date into separate subdirectories for easier processing:

mseedrename --verbose --template=%F/%f -output-dir=./sorted ./unsorted

2. Due to some mishap in the field, all filenames are wrong and you need to rename them.
Unfortunately, you are also running low on disk space. Try e.g. the following command and
carefully study the diagnostic messages

--output-dir=./sorted ./unsorted

After checking for any warnings or severe errors you can re-run the command, this time
without the --dry-run option.

Files

$GIPPTOOLS HOME/bin/mseedrename

The mseedrename "program”. Usually just a symbolic link pointing to the standard GIPPtools
start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

See also

gipptools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeevent(1l), cubeinfo(1),
mseed2ascii(1), mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1),
mseedrecover(1)

Bugs and caveats

* The mseedrename utility assumes that each miniSEED input file contains only one continuous
time series respectively! It will only look at the first miniSEED record of each file when
replacing variables in the template string. Unfortunately, this approach fails (without warning)
when mseedrename is confronted with a multiplexed miniSEED file.

* Java 1.5 does not know about symbolic links and treats them as plain files. Consequently
mseedrename will move/copy the content of the file to which the encountered symbolic link
points as if it were a normal file. This might or might not be what you expected...

* Mseedrename attempts to preserve the "last modified" time associated with the renamed file.
However, not all file systems are equal and the attempt might not be entirely successful.

	mseedrename(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

