
mseedcut(1)

Name
mseedcut - cut the miniSEED input into pieces

Synopsis
mseedcut [-v|--verbose] [--include-pattern=PATTERN]…
 [--output-dir=DIRECTORY [--force-overwrite]
 [--force-concat] [--file-length=DURATION]]
 [--trace-start=TIMEMOMENT] [--trace-stop=TIMEMOMENT]
 [--trace-length=DURATION] [--trace-offset=SHIFT]
 [--events=EVENTFILE]
 [file | directory]…

mseedcut [-h|--help] [--version] [--sysinfo]

Description
The mseedcut utility is used to cut out defined time windows from the miniSEED input as well as to
split the input data into files of same length.

The program will either read from standard input or from files given as argument at the command
line. If one or more directories are given at the command line as input, mseedcut searches
recursively for files inside those directories. The search can be restricted to contain only files with a
name also matched by a pattern given via one or more --include-pattern options.

To extract a specific time window from the miniSEED data stream the command line options --trace
-start, --trace-length, --trace-stop and --trace-offset can be used. The time window is applied to all
miniSEED input streams read. This makes it possible to cut out the same time window from many
instruments and/or multiple channels in one program run.

The obtained cutouts are written to standard output (i.e. console) for further processing by other
tools. Alternatively, if the --output-dir option is used the miniSEED output is redirected to files in
the respective directory. In addition, the miniSEED file output can automatically be directed into
files of equal length. Use the --file-length command line options to specify how long each miniSEED
file should be.

Options
The program pretty much follows expected Unix command line syntax. Some of the command line

1

options have two variants, one long and an additional short one (for convenience). These are
shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the mseedcut release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) mseedcut only reports warnings and errors. (See
the diagnostics section below.)

--include-pattern=PATTERN

Only read data from miniSEED files whose filename matches the given PATTERN. Files with a
name not matching the search PATTERN will be ignored. This option is quite useful to speed up
recursive searches through large subdirectory trees and can be used more than once in the same
command line.

You can use the two wild card characters (*, ?) when specifying a PATTERN (e.g. *.pri?). Or
alternatively, you can also use a predefined filter called GIPP that can be used exclude all files
not following the usual GIPP naming convention for miniSEED files recorded by Earth Data
loggers (e.g. message logging or status files, see examples section below).


The search PATTERN is only applied to the filename part and not to the full
pathname of a file.

--output-dir=DIRECTORY

Save the resulting miniSEED files containing the requested time series data to this DIRECTORY.
The directory must already exist and be writable! Already existing miniSEED files in that
directory will not be overwritten unless the option --force-overwrite is used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior however is not to overwrite already existing files. Instead a new file is
created with an additional number in between filename and extension.

--force-concat

Concatenate the miniSEED output creating as few new files as possible. This means that a new
output file is only started when there is a (data) discontinuity in the miniSEED input. Without
discontinuity the converted data is simply appended to the currently used output file.

2

http://www.earthdata.co.uk

By default however, a new miniSEED output file is created for every single input file.

--file-length=DURATION

Split the miniSEED output data into several files with a length of at most the given DURATION.
Common values are MINUTE, HOUR, DAY or WEEK, which are also understood as input value
(see examples section below). The mseedcut utility will start new output files at the full
MINUTE, HOUR, DAY or WEEK respectively.

Alternatively, the DURATION can also be given directly as plain number (in seconds).

The following four command line options are all used to specify a time window for extracting data
from the miniSEED input. It is considered an error to use --trace-start, --trace-stop and --trace
-length all at the same time. At most two of the three options may be used together. Also, the option
--trace-length cannot be used alone. It needs --trace-start or --trace-stop as anchor.

--trace-start=TIMEMOMENT

Begin extracting time series data at this moment in time. The format for the TIMEMOMENT
string is YYYY-MM-DDTHH:MM:SS.ssssss where YYYY-MM-DD represents the date and
HH:MM:SS.ssssss the time (fractions of seconds will be rounded to microsecond accuracy). The
letter T in between date and time is used to distinguish between date and time part and must be
given as well. Example: To begin reading samples at 1pm on March 27th, 2007 use the
TIMEMOMENT string --trace-start=2007-03-27T13:00:00.

--trace-stop=TIMEMOMENT

Stop extracting time series data at this moment in time. The format for the TIMEMOMENT string
is the same as with the --trace-start option.

--trace-length=DURATION

Stop extracting samples after this time span. The DURATION format is SS.ssssss and is given in
seconds. Again, fractions of seconds are rounded to microsecond accuracy. Example: To extract
10 minutes of data use --trace-length=600.

A trace length of 5 minutes is used as default setting if no trace length option is given and a
singular --trace-start or --trace-stop option is found.

--trace-offset=SHIFT

Use this option to shift the time window defined by the three command line options above. This
option exists purely for convenience reasons as it would be easy to obtain the same effect by
adding SHIFT seconds to the trace start and stop time manually. In other words, using --trace
-offset just spares you doing the math when you have a list of event times but would like to
extract a few seconds of data before the event as well.

The format of the trace offset value is SS.ssssss and it is given in seconds. Negative number shift
the window towards earlier times, positive number "delay" the window. The total length of the
time window is not affected by this option.

--events=EVENTFILE

In addition to the options described above it is also possible to use an event file to define time
windows. Using an event file makes it possible to cut out more than one time window per

3

program run. Each line in the event file must begin with the start time of the time window that
should be read. Optionally, the length and offset of the time window may follow in the second
and third column.

The event file contains up to three columns separated by spaces or tabulators. The three
columns are:

Column #1

Start time of the time window. Analog to the --trace-start command line option. This column
is mandatory.

Column #2

Length of the time window. Analog to the --trace-length command line option.

Column #3

An additional shift/offset applied to the time window. Analog to the --trace-offset command
line option.

Empty lines in the file are ignored. Everything following a # character (up to the end of the line)
is considered to be a comment and is skipped as well. Columns are counted from the beginning
of the line. This means you cannot define a trace offset (column #3) without having a trace
length (column #2) in the line first!

Environment
The following environment variables can optionally be used to influence the behavior of the
various GIPPtool utilities during startup.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

4

Diagnostics
Mseedcut occasional will produce user feedback. In general, user messages are classified as INFO,
WARNING or ERROR. The INFO messages are only displayed when the --verbose command line
option is used. They usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the output. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

Exit codes
Use the following program exit codes when calling mseedcut from scripts or other programs to see
if mseedcut finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

65

Data format error. (The input was not valid miniSEED.)

66

Input file did not exist or could not be opened.

74

I/O error.

99

Other, unspecified errors.

Examples
1. To extract a thirty-second long time series from an EDL miniSEED file beginning at 10:35pm on

December 26th, 2007 use:

mseedcut --trace-start=2007-12-26T22:35:00 --trace-length=30 e3395071226233000.pri0
> ./result.mseed

2. To extract the same thirty-second long time window of the vertical component recorded by
many stations run the following command line:

5

mseedcut --trace-start=2007-12-26T22:35:00 --trace-length=30 --include
-pattern=*.pri0 --output-dir=./event --force-concat ./input

This will search recursively through the subdirectory ./input for miniSEED input files ending
with the filename extension .pri0 (the first primary recording channel). It will then return the
requested time window, creating new, 30 seconds long miniSEED files in the ./event
subdirectory.

3. To simplify file handling it is often useful to create "day files", each containing the miniSEED
data of one recorder channel and one day in a single file:

mseedcut --file-length=86400 --output-dir=./daily ./input

Alternatively, you can also use one of the predefined keywords (MINUTE, HOUR, DAY or WEEK)
instead:

mseedcut --file-length=DAY --output-dir=./daily ./input

Files
$GIPPTOOLS_HOME/bin/mseedcut

The mseedcut "program". Usually just a symbolic link pointing to the standard GIPPtools start
script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

See also
gipptools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeevent(1), cubeinfo(1),
mseed2ascii(1), mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedinfo(1),
mseedrecover(1), mseedrename(1)

Bugs and caveats
• While it is possible to extract data from the same time window (i.e. same start and stop time)

from many miniSEED streams in one mseedcut run, it is unfortunately not possible to extract
multiple different time windows at the same time. You must re-run mseedcut for each time
window. Sorry!

6

	mseedcut(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

