
mseed2mseed(1)

Name
mseed2mseed - modify miniSEED header fields

Synopsis
mseed2mseed [--dry-run] [-v|--verbose]
 [--output-dir=DIRECTORY [--force-overwrite] [--force-concat]]
 [--byte-order=ORDER] [--record-size=N] [--encoding=CODEC]
 [--include-pattern=PATTERN]… [--rules=RULEFILE]
 [--match-station=REGEX] [--match-channel=REGEX]
 [--match-network=REGEX] [--match-location=REGEX]
 [--equals-sample-rate=VALUE] [--equals-sample-period=VALUE]
 [--after-time=TIMEMOMENT] [--before-time=TIMEMOMENT]
 [--set-station=STATION] [--set-channel=CHANNEL]
 [--set-network=NETWORK] [--set-location=LOCATION]
 [--time-shift=SECONDS]
 [--bugfix-edr-starttime] [--bugfix-gps-epoch]
 [file | directory]…

mseed2mseed [-h|--help] [--version] [--sysinfo]

Description
Mseed2mseed is used to modify selected header fields in miniSEED files. The actual time series
data contained in the miniSEED file is never changed. The input data is either read from standard
input or from files given as argument at the command line. If one or more directories are given at
the command line as input, mseed2mseed searches recursively for files inside those directories
applying the editing rule to each file found. The search can be restricted to contain only files with a
name also matched by a pattern given via one or more --include-pattern options.

While processing the miniSEED input, mseed2mseed modifies the header fields according to an
editing rule. The editing rule consists of one or more conditions that must be met before (one or
more) actions are applied to the miniSEED record. Actions usually describe which header field is
changed and what the new value will be. Conditions restrict the range of miniSEED records to
which the actions are applied. If no conditions are defined, all miniSEED records will be modified.
If no actions are defined the miniSEED input will pass through mseed2mseed unmodified (the
default behavior). See below for a description of all possible editing actions and conditions.

1

In addition to applying editing rules that support selective changes to the header fields, there are
also three "global" options (--byte-order, --record-size and --encoding) that can be used to change
the data "format" of the miniSEED input. Again, the actual time series data contained in the
miniSEED file is not changed. Only the method how it is stored inside the records is modified.
Unlike the editing rules described above, these options always apply to all input!

After processing, all miniSEED input that was read by the mseed2mseed program (the modified
parts as well as unmodified ones) is written to the standard output. If the --output-dir option is
used the miniSEED output is redirected to files in the respective directory.

Options
The program pretty much follows expected Unix command line syntax. Some of the command line
options have two variants, one long and an additional short one (for convenience). These are
shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the mseed2mseed release information and exit.

--sysinfo

Provide some basic system information and exit.

--dry-run

Perform a trial run with no changes and modifications made whatsoever to the file system,
while at the same time producing (almost) the same user feedback as a real run. It is most
commonly used in combination with the --verbose options to see what an mseed2mseed
command is about to do before one actually runs it for real.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) mseed2mseed only reports warnings and errors.
(See the diagnostics section below.)

--output-dir=DIRECTORY

Save processed miniSEED data to this DIRECTORY. The directory must already exist and be
writable! Already existing miniSEED files in that directory will not be overwritten unless the
option --force-overwrite is used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior however is not to overwrite already existing files. Instead, a new file is
created with an additional number in between the filename and extension.

2

--force-concat

Concatenate the miniSEED output creating as few new files as possible. This means that a new
output file is only started when there is a (data) discontinuity in the miniSEED input. Without
discontinuity the converted data is simply appended to the currently used output file.

By default however, a new miniSEED output file is created for every single input file.

--byte-order=ORDER

Set the byte order the miniSEED output. Valid values are BIG-ENDIAN or LITTLE-ENDIAN, each
selecting the respective byte order. Using the value NATIVE as argument automatically changes
the byte order to the native byte order of the currently used computer platform (e.g. little endian
on Intel PCs and big endian on Sun SPARC machines).

--record-size=N

Set the record size of the miniSEED output.The record size is given in bytes and must be a power
of two value (e.g. 512, 1024, 2048, …).

--encoding=CODEC

Set the encoding scheme for the time series data. At the moment the following encoding schemes
are supported:

INT-32

Uncompressed 32 bit integers.

FLOAT-32

Uncompressed IEEE single precision (32 bit) floating point numbers.

FLOAT-64

Uncompressed IEEE double precision (64 bit) floating point numbers.

STEIM-1

Steim-1 compressed integers.

STEIM-2

Steim-2 compressed integers.

--include-pattern=PATTERN

Only process files whose filename matches the given PATTERN. Files with a name not matching
the search PATTERN will be ignored. This option is quite useful to speed up recursive searches
for input files through large subdirectory trees and can be used more than once in the same
command line.

You can use the two wild card characters (*, ?) when specifying a PATTERN (e.g. *.pri?). Or
alternatively, you can also use a predefined filter called GIPP that can be used exclude all files
not following the usual GIPP naming convention for miniSEED files recorded by Earth Data
loggers (e.g. message logging or status files).

3

http://www.earthdata.co.uk


The search PATTERN is only applied to the filename part and not to the full
pathname of a file.

--rules=RULEFILE

Define simple header editing rules based on the ASCII table contained in RULEFILE. The table
must have ten columns and each row will result in one additional editing rule. The first six
columns define conditions that must be met by the miniSEED record before the actions
described by the last four columns are applied to the respective record. In detail, the columns
are used as follows:

Column #1

Regular expression used to match the station id. Analog to the --match-station command line
option.

Column #2

Regular expression used to match the channel id. Analog to the --match-channel command
line option.

Column #3

Regular expression used to match the network id. Analog to the --match-network command
line option.

Column #4

Regular expression used to match the location id. Analog to the --match-location command
line option.

Column #5

The start time of the processed miniSEED record must be later than this TIMEMOMENT.
Analog to the --after-time command line option.

Column #6

The start time of the processed miniSEED record must be earlier than this TIMEMOMENT.
Analog to the --before-time command line option.

Column #7

Set the station id to this value. Analog to the --set-station command line option.

Column #8

Set the channel id to this value. Analog to the --set-channel command line option.

Column #9

Set the network id to this value. Analog to the --set-network command line option.

Column #10

Set the location id to this value. Analog to the --set-location command line option.

Empty lines in the file are skipped. Everything following a # character (up to the end of the line)
is considered to be a comment and is ignored as well. If a field in the table contains the wildcard

4

character * the respective condition or action is ignored. In addition, the actions in column #7 to
#10 also accept the RESET keyword, which will clear/remove any content from the
corresponding miniSEED header field.

There is no functional difference between a rule file containing a single, ten column table row or
giving the ten corresponding options mentioned above at the command line directly. However,
using a rule file it is possible to define as many editing rules at the same time as the table
contains rows, while at the command line you are limited to a single editing rule per program
run.

The following group of command line options define conditions that must be all fulfilled before any
action is applied to the miniSEED header.

--match-station=REGEX

Modify miniSEED records, where the station id header field is matched by the given regular
expression. You can use the two wild card characters (*, ?) when specifying the REGEX search
pattern.

--match-channel=REGEX

Modify miniSEED records, where the channel id header field is matched by the given regular
expression. You can use the two wild card characters (*, ?) when specifying the REGEX search
pattern.

--match-network=REGEX

Modify miniSEED records, where the network id header field is matched by the given regular
expression. You can use the two wild card characters (*, ?) when specifying the REGEX search
pattern.

--match-location=REGEX

Modify miniSEED records, where the location id header field is matched by the given regular
expression. You can use the two wild card characters (*, ?) when specifying the REGEX search
pattern.

--equals-sample-rate=VALUE

Select miniSEED records of the given sampling rate for editing. The sample rate is given in
samples per second.


Currently, only natural numbers are accepted as VALUE for the data sample
rate. Please use the --equals-sample-period option for cases where the sample
rate is smaller than one sample per second.

--equals-sample-period=VALUE

Select miniSEED records of the given sampling period for editing. The sample period is given in
seconds between samples.


Currently, only natural numbers are accepted as VALUE for the sample period.
Please use the --equals-sample-rate option for cases where the time between
samples is smaller than one second.

5

--after-time=TIMEMOMENT

Only consider (complete) miniSEED records with a start time after (including) the given
TIMEMOMENT for editing. The format for the TIMEMOMENT string is YYYY-MM-DD
THH:MM:SS.ssssss where YYYY-MM-DD represents the date and HH:MM:SS.ssssss the time
(fractions of seconds will be rounded to microsecond accuracy). The letter T in between date and
time is used to distinguish between date and time part and must be given as well. Example: To
restrict the editing rule to miniSEED records beginning after 1pm on March 27th, 2007 use the
option --after-time=2007-03-27T13:00:00.


The minimal "work unit" of the mseed2mseed utility is a complete miniSEED
record! If a record begins before the TIMEMOMENT but extends into the
requested time window the "after time" condition is not matched.

--before-time=TIMEMOMENT

Only modify miniSEED records with a start time header field before (not including) the given
TIMEMOMENT. For the format of TIMEMOMENT please see the --after-time option above.

The remaining command line options describe the actions the editing rule will perform if all given
conditions were met by the miniSEED record.

--set-station=STATION

Set the station id header field. The STATION may be up to five characters long. If the given string
is shorter it will be (right-) padded with space characters. If no STATION name is given after the
equal sign, the station id header field will be reset/cleared. The same effect can also be obtained
by using the RESET keyword instead of a STATION name.

--set-channel=CHANNEL

Set the channel id. The CHANNEL may be up to three characters long. A shorter string will be
(right-) padded with space characters. If no new CHANNEL name is given after the equal sign,
the channel id header field will be reset/cleared. The same effect can be obtained by using the
RESET keyword instead of a CHANNEL name.

--set-network=NETWORK

Set the network id. The NETWORK may be up to two characters long. If the given network string
is less than two characters long it will be (right-) padded with space characters. If no NETWORK
name is given after equal sign, the network id header field will be reset/cleared. The same effect
can also be obtained by using the RESET keyword instead of a NETWORK name.

--set-location=LOCATION

Set the location id. The LOCATION may be up to two characters long. Again, shorter strings will
be (right-) padded with space characters. If the new LOCATION name is missing, the location id
header field will be reset/cleared. Alternatively, the RESET keyword can be given as new
LOCATION to obtain the same effect.

--shift-time=OFFSET

Shift the start time of the miniSEED record by the given time span. The format of the OFFSET
value is SS.ssssss and is given in seconds. Negative numbers will shift the start time towards
earlier times.

6

--bugfix-edr-starttime

Correct buggy start times recorded by certain EDR-209/210 data loggers. At least the r3.35
firmware (maybe earlier releases as well) of the EDR data logger contains a bug where some but
not all record start times are slightly off by 0.0001s (corresponding to a "tick" in miniSEED lingo).
Fortunately, this is not a digitizing problem but simply caused by a wrong (start) time value
being written into the fixed header of the record. (The root of the problem seems to be that a a
floating point number (representing the time) gets truncated instead of being rounding.)

Of course the bug has been fixed by EarthDate already, however, this command line option
remains so that miniSEED files that were recorded in the past can be corrected as well.


It is not safe to apply this "BugFix" to miniSEED data that is not affected by the
EDR firmware bug! It probably will irreversible screw up your start times!

--bugfix-gps-epoch

Correct start times of miniSEED recordings affected by GPS week number rollover (WNRO)
problems.

The GPS satellite system tracks time by using two counters. A week number counter (relative to
the GPS epoch) and a milliseconds counter relative to the beginning of the week. Unfortunately,
the week number counter is only 10 bits long, hence a "rollover" happens every 1024 weeks
(about 19.7 years). This is very much like a classical "integer overflow" in programming or the
infamous "year 2000 problem" (Y2K).



The last epoch "rollover" of the GPS satellite system occurred on April 6th, 2019.
However, depending on the build-in GPS receiver firmware, WNRO problems
may also occur on other dates. For example the GPS receiver build into an
EarthData PR6-24 Logger (EDL) reports wrong times starting July 28th, 2019!

Using this command line option will, if necessary, automatically apply one of two pre-configured
time corrections to miniSEED data. (Please also see the examples section below.)

1. Shift the start times of all miniSEED records that are seemingly older than half a GPS epoch
(512 weeks, relative to today/now) by adding one full GPS epoch (1024 weeks) to the
respective miniSEED start time.

This takes care of the standard fault were the recorded time is off by a full GPS epoch after
the week number rollover (WNRO).

2. It will shift the start time of miniSEED records seemingly recorded in the year 2031 by
388961152 seconds into the past (i.e. towards "today").

This correction applies to EarthData PR6-24 recorded miniSEED data where the WNRO error
first shifts times by one GPS epoch into the past. But because the PR6-24 hardware did not
exist before the year 2000, the build-in firmware is not designed to handle dates before the
year 2000! That is why an internal number overflow can subsequently catapult the recording
dates into the year 2031!

7



It is not save to apply this "BugFix" across-the-board to all miniSEED data. The
time shift (1024 weeks into the future) will be applied to every miniSEED record
that claims to be 512 weeks (about 10 years) old or older. (Here, the age of the
record is taken relative to today/now, which is the day on which the
mseed2mseed is run.) This will become very problematic when working with
historic data!

Environment
The following environment variables can optionally be used to influence the behavior of the
various GIPPtool utilities during startup.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

Diagnostics
Mseed2mseed occasional will produce user feedback. In general, user messages are classified as
INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose command
line option is used. They usually report about the progress of the program run, give statistical
information or write a final summary.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the outcome. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

A good method to see what will happen is to use the --dry-run and the --verbose command line
option at the same time. If the user feedback indicates that mseed2mseed works as expected it can
be started again, this time without the --dry-run option.

8

Exit codes
Use the following program exit codes when calling mseed2mseed from scripts or other programs
to see if mseed2mseed finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

66

An input file did not exist or was not readable.

74

I/O error.

99

Other, unspecified errors.

Examples
1. To convert a input.mseed file to big endian byte order and a record size of 512 bytes use:

mseed2mseed --byte-order=BIG-ENDIAN --record-size=512 ./input.mseed > output.mseed

2. Your field data contain the recorder unit number (something like e3100) in the station id field of
the miniSEED file. However, for processing you would rather work with the name of the seismic
station (in this example ABCDE is used). To selectively change the station id in the miniSEED
header for all files found in the input directory use the following command:

mseed2mseed --match-station=e3100 --set-station=ABCDE -output-dir=./output ./input

Afterwards you can pick up the updated data set, i.e. the modified miniSEED files as well as the
unmodified files (recorded by a different unit) in the output directory.

3. To remove the location id from all input files in the ./input directory, you would use one of the
two following commands:

mseed2mseed --set-location= --output-dir=./modified ./input

mseed2mseed --set-location=RESET --output-dir=./modified ./input

9

Please note that the RESET keyword can also be used if you work with a rule file (see option
--rules).

4. To change the channel id from p0 to EHZ for all files sampled with 100Hz you could use the
following command:

mseed2mseed --match-channel=p0 --equals-sample-rate=100 --set-channel=EHZ --output
-dir=./modified ./input

5. Due to a firmware bug, some of the GPS receivers providing time information to your loggers
malfunction (the date is off by precisely two years). Now your field data contains files recorded
in 2013 (correct) and miniSEED files that were seemingly recorded in 2011 (wrong). To correct
the wrong date you could used the following:

mseed2mseed --before-time=2012-01-01 --shift-time=+63072000 --output
-dir=./corrected-time ./raw-data

This will add two years (2*365*24*60*60=63072000) to all files that were (seemingly) recorded
before the year 2012.


Watch out for leap years and leap seconds when working with "times"! The
mseed2mseed utility will blindly shift the start times by the given offset and
ignore any intricacies of the Gregorian calendar.

6. Use the following command to correct faulty times in miniSEED records that were caused by the
GPS week number rollover (WNRO) bug:

mseed2mseed --bugfix-gps-epoch --output-dir=./corrected-time ./raw-data

The command above is functionally equivalent to executing the two commands:

mseed2mseed --before-time=2001-12-31 --shift-time=619315200 --output-dir=./temp
./raw-data
mseed2mseed --after-time=2031-01-01 --shift-time=-388961152 --output
-dir=./corrected-time ./temp



It is not necessary to also consider the leap seconds that were added during the
last GPS epoch. The leap second information transmitted by the GPS satellites
(and used by the recorder) is correct for the moment of recording. It is only the
problem of determining the correct epoch that the loggers dont know how to
handle!

10

Files
$GIPPTOOLS_HOME/bin/mseed2mseed

The mseed2mseed "program". Usually just a symbolic link pointing to the standard GIPPtools
start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

See also
gipptools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeevent(1), cubeinfo(1),
mseed2ascii(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1),
mseedrename(1)

Bugs and caveats
• The minimal "work unit" of the mseed2mseed utility is a complete miniSEED record! Use the

mseedcut program for sample precise cutting.

• The mseed2mseed utility is only intended for modifying miniSEED header fields. It will not
change the actual time series data contained in the input.
However, changing byte order, record size or encoding method forces seed2mseed to re-
encoded the input data. Due to the re-encoding, the resulting output might differ from the input
in more than just the modified header fields! Nevertheless, looking at the actual samples (e.g.
with mseed2ascii) shows that the actual values of the time series have not changed!

• Mseed2mseed has way to many command line options. Sorry! Maybe consider using a rule file
(see option --rules) to shorten your command line?

11

	mseed2mseed(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

