
mseedrecover(1)

Name
mseedrecover - recover miniSEED data from corrupted or damaged files

Synopsis
mseedrecover [--dry-run] [-v|--verbose]
 [--start-offset=OFFSET] [--stop-offset=OFFSET]
 [--search-interval=SIZE] [--no-dedupe]
 [--output-dir=DIRECTORY [--force-overwrite]
 [--force-concat] [--force-sort]]
 [file | directory]…

mseedrecover [-h|--help] [--version] [--sysinfo]

Description
Mseedrecover reads from a file and tries to find valid miniSEED records in the input. If a directory
is given at the command line, mseedrecover searches recursively for input files inside that
directory. If no file or directory argument was given, the standard input is scanned for miniSEED
data instead.

While reading, the input is searched for certain byte patterns that are typical for all miniSEED
records. If a potential record is located, mseedrecover will attempt to read it completely. If
successful, the integrity of the data is checked next. Intact miniSEED records are written to
standard output (i.e. console) or saved in an output directory (use option --output-dir). All damaged
or incomplete fragments are discarded. Non-miniSEED data will be ignored and skipped!

Unlike most other GIPPtool utilities, mseedrecover is quite unassuming about its input. If
necessary, mseedrecover will read data from a device file directly (see the example section below)
or scan an (uncompressed) disk image file.

Options
The program pretty much follows expected Unix command line syntax. Some of the command line
options have two variants, one long and an additional short one (for convenience). These are
shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

1

-h, --help

Print a brief summary of all available command line options and exit.

--version*: Print the mseedrecover release information and exit.

--sysinfo*: Provide some basic system information and exit.

--dry-run

Perform a trial run with no changes and modifications made whatsoever to the miniSEED data,
while at the same time producing (almost) the same user feedback as a real run. It is most
commonly used in combination with the --verbose options to see what an mseedrecover
command is about to do before one actually runs it for real.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) mseedrecover only reports warnings and errors.
(See the diagnostics section below.)

--start-offset=OFFSET

Before any data is analyzed, the first OFFSET bytes are skipped and ignored from the input. Use
this option to "fast forward" the input to a position where you suspect recoverable miniSEED
data.

--stop-offset=OFFSET

The search for miniSEED data fragments will be aborted after the stop offset limit was passed.
The OFFSET is as absolute position from the beginning of the input and given in bytes (and not
relative to the --start-offset parameter).

This offset is not used as an absolute, hard stop criteria! If the limit is reached
while mseedrecover currently extracts valid miniSEED data from the input,
the program will rather finish extracting the current (intact) data fragment
than to stop abruptly in the middle of some miniSEED record.

--search-interval=SIZE

Search interval in bytes. When searching for miniSEED data in the input, the program will look
every SIZE bytes if a valid miniSEED record starts at that offset. Although in principal, any
positive number is possible as interval, it probably does not make sense to use anything other
than a power of two (i.e. 1, 2, 4, 8, 16, etc.).

The default value of 512 bytes seems to be the best compromise between speed and
thoroughness of the search for most situation. However, to make absolutely sure you dont miss
anything chose an interval of 1.

-no-dedupe

Disable the detection of duplicate miniSEED records. The default behavior however is to
automatically detect duplicates and to only save one single copy per record.

2

Multiple instance of the same miniSEED record are often encountered when
rescuing data directly from a disk drive while bypassing the filesystem level
(using "block level access"). This is because EDR/EDL recorder create a new
copy of an existing miniSEED file before appending more records to it. After the
data is appended the original file is deleted. Although not longer accessible
from the filesystem level the data of the original, old file is still on the disk
where it may become overwritten eventually. These already deleted files are
the origin of the multiple copies.

--output-dir=DIRECTORY

Save all recovered records to this DIRECTORY. The directory must already exist and be writable!
Already existing miniSEED files in that directory will not be overwritten unless the option
--force-overwrite is used as well.

--force-overwrite

Overwrite already existing files in the output directory, which happen to have the same filename
as freshly recovered miniSEED fragments, without mercy!

The default behavior however is not to overwrite already existing files. Instead a new file is
created with the file number .1 (or .2, .3, etc.) added before the extension.

--force-concat

Concatenate the miniSEED output, creating as few new files as possible. This means that a new
output file is only started when there is a (data) discontinuity in the miniSEED input. Without
discontinuity the converted data is simply appended to the currently used output file.

By default however, a separate new output file is started for every single miniSEED input file.

--force-sort

Sort the recovered miniSEED fragments. If this option is set, an additional (sub-)directory level
(consisting of year and day-of-year) will be created inside the output directory and the recovered
miniSEED records are placed in the respective subdirectories.

The mseedrename command provides a more elaborated method to (re-
)organize miniSEED files.

Environment
The following environment variables can optionally be used to influence the behavior of the
various GIPPtool utilities during startup.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

3

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

Diagnostics
Mseedrecover occasional will produce user feedback. In general, user messages are classified as
INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose command
line option is used. They usually report about the progress of the program run, give statistical
information or write a final summary.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the output. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

A good method to see what will happen is to use the --dry-run and the --verbose command line
option at the same time. If user feedback indicates that mseedrecover works as expected it can be
started again, this time without the --dry-run option.

Exit codes
Use the following program exit codes when calling mseedrecover from scripts or other programs
to see if mseedrecover finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

66

An input file did not exist or was not readable.

74

I/O error.

4

99

Other, unspecified errors.

Examples
1. You have a file that you know must contain miniSEED data. However, none of the other

GIPPtool utilities will accept it as input. All you get are error messages, complaining about an
"IntegrityException" or other strange things. In other words, you have a damaged file! To see
what can be salvaged from the damaged.mseed file you might try the following:

mseedrecover --dry-run --verbose --search-interval=1 damaged.mseed

From the user feedback generated during the trial run you gather that there is hope to recover
at least some of the original content of the file so you next run

mseedrecover --verbose --search-interval=1 damaged.mseed > recovered.mseed

This will write the recovered data in the respective output file. Comparing the file size of the
two files then gives you an idea, how much data was lost.

2. There is a problem with an EDL hard disk. Maybe you cannot copy the miniSEED files from the
"data" partition because of a corrupted file systems. Or maybe an overeager assistant
accidentally formatted the "data" partition before the recorded miniSEED files were saved.
Whatever the reason, to directly recover miniSEED data from an EDL disk (without going
through the file system) you might run the following command:

mseedrecover --output-dir=./rescue911 --force-sort /dev/sdx3

This assumes that you can access the "data" partition of the faulty disk via the device file
/dev/sdx3 (EDL disks always use the third partition to store miniSEED data). By reading from the
device file directly, you bypass the faulty file system and read the "data" partition block by
block. The recovered miniSEED fragments are written to "year"-"day-of-year" subdirectories in
the rescue911 directory.

Files
$GIPPTOOLS_HOME/bin/mseedrecover

The mseedrecover "program". Usually just a symbolic link pointing to the standard GIPPtools
start script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

5

See also
gipptools(1), cube2ascii(1), cube2mseed(1), cube2segy(1), cubeevent(1), cubeinfo(1),
mseed2ascii(1), mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1),
mseedrename(1)

Bugs and caveats
• The mseedrecover program only recovers data in miniSEED format! It cannot recover data in

other formats, such as EDL log or configuration files. Unless you can recover those files by other
means (maybe some "undelete" or "unformat" tool can help) they are lost!

• When using a device file as input (see example section) you might recover field-data from other
experiments. Possibly from experiments many years ago. This is should be of no (privacy)
concern as only raw data, miniSEED files are affected. However, you should be aware of it.

6

	mseedrecover(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

