
cube2ascii(1)

Name
cube2ascii - convert Cube data to ASCII text format

Synopsis
cube2ascii [-v|--verbose] [--include-pattern=PATTERN]…
 [--trace-start=TIMEMOMENT] [--trace-stop=TIMEMOMENT]
 [--trace-length=DURATION] [--trace-offset=SHIFT]
 [--events=EVENTFILE] [--timing-control=ALGORITHM]
 [--fringe-samples=MODE] [--resample=ALGORITHM]
 [--output-dir=DIRECTORY [--force-overwrite]]
 [--format=FORMAT]
 file | directory…

cube2ascii [-h|--help] [--version] [--sysinfo]

Description
The cube2ascii utility reads Cube data from one or more files and converts them to ASCII text
format. If an input directory is given as argument, cube2ascii searches recursively for Cube files
inside that directory. The search can be shortened to contain only files with a name matching
patterns given by the --include-pattern option.

After the initial search for available Cube files completed, the program will begin to index the data
contained in the respective files. This step is necessary so that the program later knows of all Cube
files belonging to the same continuous trace and about the correct chronological order.

As soon as the end of a continuous time series is detected, the utility will begin to work through the
(internal) lists of time windows that were requested by the user via the options --events, --trace
-start, --trace-stop, etc. The required samples are read from the Cube files, resampled and
converted to the ASCII text format. Finally, the result is written directly to standard output (i.e.
console) or saved in an output directory (use option --output-dir). Cube2ascii then returns back
again to scanning through the Cube input for more continuous recordings, processing one trace
after another.

Options
The program pretty much follows expected Unix command line syntax. Some command line
options have two variants, one long and an additional short one (for convenience). These are

1

shown below, separated by commas. However, most options only have a long variant. The equal
sign (‘=’) for options that take a parameter is required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the cube2ascii release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) cube2ascii only reports warnings and errors.
(Also see the diagnostics section below.)

--include-pattern=PATTERN

Only read data from Cube files whose filename matches the given PATTERN. Files with a name
not matching the search PATTERN will be skipped and ignored. This option is quite useful to
speed up recursive searches through large subdirectory trees and can be used more than once in
the same command line.

You can use the two wild card characters ('*' and '?') when specifying a PATTERN (e.g. *.123). Or,
you can also use a predefined filter called GIPP that can be used to exclude all files not following
the usual GIPP naming convention for files recorded by Cubes.

The given search PATTERN only applies to the filename but not to the names of
the (sub-)directories inside which the Cube file is located.

The following command line options are used to specify an input time window for reading data
from the Cube files. It is considered an error to use --trace-start, --trace-stop and --trace-length all
at the same time. At most two of the three options may be used together. Also, the option --trace
-length cannot be used alone. It needs a --trace-start or --trace-stop as anchor.

--trace-start=TIMEMOMENT

Begin converting Cube data at this moment in time. The format for the TIMEMOMENT string is
YYYY-MM-DDTHH:MM:SS.ssssss where YYYY-MM-DD represents the date and HH:MM:SS.ssssss
the time (fractions of seconds will be rounded to microsecond accuracy). The letter 'T' in
between date and time distinguishes between date and time part and must be given as well.

Example: To begin reading samples at 1pm on March 27th, 2007 use the TIMEMOMENT string
--trace-start=2007-03-27T13:00:00.

--trace-stop=TIMEMOMENT

Stop processing time series data after this moment in time. The format for the TIMEMOMENT
string is the same as with the --trace-start option.

2

--trace-length=DURATION

Stop processing samples after this time span. The DURATION is given in seconds and formatted
as SS.ssssss. Again, fractions of seconds will be rounded to microsecond accuracy.

Example: To extract 10 minutes of data use --trace-length=600.

A trace length of 5 minutes will be used as default setting if no trace length option is given but a
singular --trace-start or --trace-stop option is encountered.

--trace-offset=SHIFT

Use this option to shift the whole time window defined by the command line options above. This
option exists purely for convenience reasons as it would be easy to obtain the same effect by
adding SHIFT seconds to the trace start and stop times manually. In other words, using --trace
-offset just spares you doing the math when you have a list of event times (e.g. from an
earthquake catalog) but would like to extract a few seconds of data before the event as well.

The format of the trace offset value is SS.ssssss and it is given in seconds. Negative number shift
the window towards earlier times, positive number "delay" the window. The total length of the
time window is not affected by this option.

--events=EVENTFILE

In addition to the four time window options described above, it is also possible to use an event
file to define many time windows all at once. Using an event file makes it possible to convert
more than one time window per program run. Each line in the event file must begin with the
start time of a time window that should be converted to ASCII format. Optionally, the length and
offset of the time window may follow in the second and third column.

The event file contains up to three columns separated by spaces or tabulators. The three
columns are:

Column #1

Start time of the time window. Analog to the --trace-start command line option. This column
is mandatory.

Column #2

Length of the time window. Analog to the --trace-length command line option. If this column
is missing a (default) trace length of 2 minutes is processed.

Column #3

An additional shift/offset is applied to the time window. Analog to the --trace-offset command
line option. This column is also optional.

Empty lines in the file are ignored. Everything following a # character (up to the end of the line)
is considered to be a comment and is skipped as well. Columns are counted from the beginning
of the line. This means you cannot define a trace offset (column #3) without having a trace
length (column #2) in the line first!

3

The use of an event file is completely independent of the trace start, stop, length
or offset command line options. Especially, the --trace-length option only
applies to time windows given via --trace-start or --trace-stop but never to
time windows defined inside an event file!

Ignoring the nitty-gritty implementation details of Cube file format, Cube recordings basically
consist of a continuous stream of sample (amplitude) values, where occasional a single sample is
additionally timestamped with the precise time of its recording (taken from GPS). The following
command line options are used to control how the time information contained in the Cube files is
transported into the ASCII text format.

--timing-control=ALGORITHM

Cube data loggers keep track of the time by tagging selected sample values with precise time
information. These (time) tagged samples are the foundation of the overall timing accuracy of
the recording. To ensure a high precision it is essential to verify the integrity and premium of
the recorded time tags. Use this option to select one of the following quality control algorithms:

LLS

Compute a "local least squares" (LLS) approximation to detect outliers and other dubious time
information.

The algorithm will determine the timing quality from the squared residual error ("misfit") of
an individual time tag compared to a fitted line through the respective surrounding time tags.
Any unexpected large misfit is a good indicator for the presence of a "bad" time tag (e.g. an
outlier). All suspicious time tags are excluded from further processing.

This is the default timing quality control algorithm.

RULE

Do a rule-based evaluation of the time tags. The rules are predefined and hard-coded into the
program. They were determined by trial and error.

NONE

Skip quality control altogether! This will use any available timing information without
further qualification.

FAKE

This "quality control" algorithm will completely overwrite any time information recorded in
a Cube trace with a made-up fake time. (All trace start times are set to 1970-01-01 00:00.)
Obviously, this will completely screw up the timing information! Use it at your own risk.

Using the FAKE time algorithm will only succeed if the --fringe
-samples=NOMINAL command line option is used as well.

The main advantage of the LLS algorithm is its flexibility. It was designed to adapt to different
situations and to handle different time keeping hardware as well. The RULE based algorithm is
faster and much simpler. However, the fixed rule set only works effectively for anticipated
situations and is limited to the current build-in and well-known GPS hardware. Future Cube

4

generations e.g. will probably require an updated set of rules to reliably detect bad time tags due
to different time keeping hardware. The NONE "algorithm" basically disables any timing quality
control. It should only be used if you can trust all time tags unconditionally (or do not care).
Finally, the FAKE time algorithm is intended for worst case scenarios, where a user absolutely
must recover a Cube data stream that cannot be processed normally due to total lack of
(recorded) timing information. By adding a fake time the Cube file(s) becomes "processable"
again, although at the price of a completely made-up time information.

In addition to the above listed algorithms, recorded time tags are also screened for overall data
integrity (range check, checksum) and completeness. Also, there a certain hardware limitation
common to all recorders of the Cube family that occasionally cause individual time tags to be
discarded. This is done transparently in the background and before any of the above algorithms
are applied. This cannot be influenced by the user!

--fringe-samples=MODE

Determines how to treat samples that were recorded before the first GPS time fix or after the last
GPS time fix taken by the Cube unit. Determining the precise recording time of these "fringe
samples" is problematic because without a second time tag on the other side of the sample, the
precise sampling rate inside that segment cannot be computed. Valid options are:

SKIP

Simply exclude all samples without good time control from the conversion. (Default)

NOMINAL

Include fringe samples assuming a perfect nominal sample rate (e.g. 50 Hz, 100 Hz, 200 Hz, …;
as configured in the Cube recorder setup).

CONSTANT

Include fringe samples assuming a constant (linear) clock drift over the whole recording. The
clock drift is calculated from the very first and last available GPS fix in the recording.

Usually, a Cube recording contains only a few seconds of data before the very first GPS time fix
occurs. At the end of recording, the time without GPS fix depends on the recorder configuration.
(GPS running continuous or in cycled mode? How long is the cycle?) So, unless you power down
and pick up the Cube unit immediately after the recording there should be no problem to just
skip and ignore all fringe samples, which is the default behavior.

The situation is different however, when the Cube is deployed in locations without (reliable) GPS
reception, e.g. in water or underground in a tunnel. Especially, if the Cube runs out of power
before it can obtain a last GPS fix. Here it might become important to include any recorded
sample despite the lack of good (GPS) time control. For these cases the NOMINAL and CONSTANT
mode are intended.

--resample=ALGORITHM

The sampling rate at which a Cube records data is derived from a build-in, high precision crystal
oscillator. But despite using high-quality components, a tiny arbitrary offset from its nominal
frequency remains. Causes for the offset include e.g. component aging and changes in
temperature that alter the piezoelectric effect in the crystal oscillator. Unfortunately, this results
in a slightly varying sampling rate during the recording that needs to be compensated by

5

resampling the time series. This command line option selects the resampling algorithm.

It is highly recommended that you stick to the default SINC algorithm unless
you have special needs and know what you do!

SINC

Resample the Cube using a windowed sinc interpolation with a normalized Blackmann-
Nuttall window. By default, the window width is set to 25. (Resulting in a filter kernel of
2x25+1=51 points.)

The width of the Blackmann-Nuttall window can be adjusted by appending the desired width
to the SINC keyword (separated by a single comma; no spaces). Please see below for an
example.

LINEAR

Use a basic linear interpolation between samples.

NONE

Simply copy the Cube input time series to the output without any modification to the sample
amplitudes at all! The only modification done by this algorithm is to (slightly) shift the
samples along the time axis. The recording time of the very first sample will be used as start
time of the time series. All following samples will be time shifted such that a "perfect" sample
period results. Obviously, the absolute timing error increases as the converted time series
grows in length!

This NONE "resampler" simply fudges the recording time of the input
samples! There is absolutely no resampling done by this algorithm (in a
mathematical sense). Its usage is highly discouraged!

The remaining command line arguments control the output of cube2ascii utility. An output
directory can be selected to which the converted time series data is written. Other arguments are
provided to select the specific formatting variant that is used for writing.

--output-dir=DIRECTORY

Save the resulting ASCII text files to this DIRECTORY. The directory must already exist and be
writable! Already existing files in that directory will not be overwritten unless the option --force
-overwrite is used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior, however, is not to overwrite already existing files. Instead a new file is
created with an additional number in between filename and extension.

--format=FORMAT

Select one of the following predefined output formats:

6

ALL

The combination of the HEADER and DATA format. (This is also the default output format.)

HEADER

Write only the header information. By itself this output format is probably pretty useless. (It
only exists, because the GIPPtools sibling program mseed2ascii also provides a HEADER
output format.)

If you just want to learn about the content of a Cube file without peeking at
the actual data, the cubeinfo utility is a much more appropriate program.

DATA

For each sample (one per line) write the recording time (first column) followed by one
column for each recording channel. This is probably the most useful output format if you
plan to import the trace into another software package.

CHANNEL

Write sample values, one column per recording channel. The resulting file contains no extra
column for the recording time of the samples. Instead the start time of the file and the
sampling rate must be read from the single header line.

CHANNEL0

CHANNEL1

CHANNEL2

CHANNELn

Output sample values of recording channel #0, #1, #2, …, #n only (Cube recording channels
are numbered starting with 0.) Otherwise this single column output format is like CHANNEL
(see above).

Environment
The following environment variables can optionally be used to influence the behavior of the
GIPPtool utilities.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be located in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

All utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime

7

environment. This is typically used to set the Java heap size available to GIPPtool programs.

GIPPTOOLS_LEAP

The GIPPtools require up-to-date leap second information to correctly interpret Cube files.
Usually, this information is obtained from the leap-seconds.list file located in the config
subdirectory of the GIPPtools installation directory. This environment variable can be used to
provide a more up-to-date leap second list to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

Diagnostics
Cube2ascii occasional will produce user feedback. In general, user messages are classified either as
INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose command
line option is used. They usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the output. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for.

Finally, ERROR messages inform about problems that can not be resolved automatically. Program
execution usually stops and the user must fix the problem first.

Exit codes
Use the following program exit codes when calling cube2ascii from scripts or other programs to
see if the program finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

65

Data format error.

66

Input file did not exist or could not be opened.

70

Error in internal program logic.

8

74

I/O error.

99

Other, unspecified errors.

Examples
1. To convert all Cube files recorded during an experiment simply use:

cube2ascii --verbose --output-dir=./ascii-out/ ./cube-in/

The program will recursively search for Cube files inside the cube-in subdirectory. The resulting
ASCII files are written to the ascii-out subdirectory.

While searching for Cube files in the cube-in directory cube2ascii will probably complain about
files that are not in the expected Cube file format. To get rid of the annoying warnings try the
following command line:

cube2ascii --verbose --include-pattern=GIPP --output-dir=./ascii-out/ ./cube-in/

This will exclude all files not following the usual GIPP naming convention for Cube files. Also, if
you are only interested in the data recorded by the Cube with the number 544 you could modify
the command line as follows:

cube2ascii --verbose --include-pattern=*.544 --output-dir=./ascii-out/ ./cube-in/

This works because Cube recorder by default use the unit id as file extension. You can also
repeat the include pattern option several times to pick more than one set of files:

cube2ascii --verbose --include-pattern=*.544 --include-pattern=*.545 --output
-dir=./ascii-out/ ./cube-in/

The last command will only process files written by Cube #544 and Cube #545.

2. To convert 30 seconds of Cube data from a single file starting at 1pm on February 16th you
would use the following command:

cube2ascii --trace-start=2010-02-16T13:00:00 --trace-length=30 --output-dir=./ascii
-out/ 02161251.034

The program will read from Cube file 02161251.034 from the current working directory and the
converted data will be written to the ascii-out subdirectory.

9

3. You can customize the window width of the sinc resampling algorithm. The following line
shows the command line argument necessary to change the window width from the default of
25 to a width of 30:

cube2ascii --resample=SINC,30 --output-dir=./ascii-out/ ./cube-in/*

Files
$GIPPTOOLS_HOME/bin/cube2ascii

The cube2ascii "program". Usually just a symbolic link pointing to the standard GIPPtools start
script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

See also
gipptools(1), cube2mseed(1), cube2segy(1), cubeevent(1), cubeinfo(1), mseed2ascii(1),
mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1),
mseedrename(1)

Bugs and caveats
None so far.

10

	cube2ascii(1)
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

