
cube2segy(1)

Name
cube2segy - convert Cube data to SEG-Y format

Synopsis
cube2segy --project=FILE --shot-gather=FFIDs | --receiver-
gather=CHANNELs
 [-v|--verbose] [--include-pattern=PATTERN]… [--index-cache=FILE]
 [--timing-control=ALGORITHM] [--fringe-samples=MODE]
 [--output-dir=DIRECTORY [--force-overwrite] [--force-concat]]
 [--segy-format=FORMAT] [--trace-length=DURATION]
 [--trace-offset=SHIFT] [--reduction-velocity=VELOCITY]
 file | directory…

cube2segy [-h|--help] [--version] [--sysinfo]

Description
The GIPPtool utility cube2segy gathers seismic data from one or more recorders and integrate the
traces into seismic sections. It supports the creation of shot as well as receiver gathers. You can
switch between the two gather modes by specifying --shot-gather or --receiver-gather at the
command line. The option --segy-format is used to further specify the output file format (SEG-Y,
Seismic Unix, …).

To convert the recorded data into seismic sections, the program must know about the setup of the
experiment. This is done by providing a "project file" (command line option --project) containing
information about the location of every shot and receiver point in the experiment as well as the
times when the receivers were actually recording, respectively when the sources were triggered.

After parsing the project file, the program will next index the recorded seismic data contained in
the files given at the command line. This step is necessary so that the program later knows, which
of the input files contain the traces required for writing the seismic section. If a directory is given at
the command line, the program searches recursively for input files inside that directory. The search
can be shortened to contain only files matching a pattern given by the --include-pattern option. If
you plan to use this program repeatedly on the same dataset, you might also consider saving the
index to a file in between program runs (option --index-cache).

After all the required information is available, the utility will begin to prepare (internal) lists of
time windows describing what data belongs into the respective shot/receiver gather. This is usually
done by taking the trigger time of the seismic source and then looking-up, which receivers were

1

actually recording at that time. However, you can further influence the calculation of relevant time
windows by applying a reduction velocity, changing the trace length and/or setting a trace offset.
(See --reduction-velocity, --trace-length and --trace-offset options.)

Finally, the information from the internal shot/receiver gather list are used to look-up the
respective input files in the previously created index of the available seismic data. The program
then reads the necessary data snippets from the input files, converts them to SEG-Y or Seismic Unix
format and writes the resulting seismic sections to the current working directory or in a separate
directory (use option --output-dir).

Options
The program pretty much follows expected Unix command line syntax. Some of the command line
options have two variants, one long and an additional short one (for convenience). These are
shown below, separated by commas. However, most options only have a long variant. The ‘=’ for
options that take a parameter is required and can not be replaced by a whitespace.

-h, --help

Print a brief summary of all available command line options and exit.

--version

Print the cube2segy release information and exit.

--sysinfo

Provide some basic system information and exit.

-v, --verbose

This option increases the amount of information given to the user during the program
execution. By default (i.e. without this option) the GIPPtool utilities only report warnings and
errors. (See also the diagnostics section below.)

--include-pattern=PATTERN

Only read data from files whose filename matches the given PATTERN. Files with a name not
matching the search PATTERN will be ignored. This option is quite useful to speed up recursive
searches through large subdirectory trees and can be used more than once in the same
command line.

You can use the two wild card characters (*, ?) when specifying a PATTERN (e.g. *.pri?). Or
alternatively, you can also use a predefined filter called GIPP that can be used exclude all files
not following the usual GIPP naming convention for Cube files.

The given search PATTERN is only applied to the filename part and not to the
full pathname of a file.

--index-cache=FILE

Enable caching of the (internal) input file index. Before this program can write seismic sections
it first must know which input file contains the necessary traces. For that purpose an index of all

2

available input files is build first. However, since the content of all input files must be scanned
for the index, this can be a quiet time consuming process. To avoid lengthy, repeated scans every
time the program is started, the --index-cache option can be used to cache the index of all input
files in a separate FILE.

It is the responsibility of the user to ensure that the cached index is up-to-date
and (still) corresponds to the files and directories given as input at the
command line. If in doubt, simply delete the cache manually and let the utility
generate and save a new cache file during the next program run.

If the cache FILE already exist the index will be read from it. If the file does not exist (yet), the
index will be written to it after scanning the input files. Already existing cache files will never be
overwritten! By default (i.e. without this option) caching of the index is disabled.

--timing-control=ALGORITHM

Cube data loggers keep track of the time by tagging selected sample values with precise time
information. These (time) tagged samples are the foundation of the overall timing accuracy of
the recording. To ensure a high precision it is essential to verify the integrity and premium of
the recorded time tags. Use this option to select one of the following quality control algorithms:

LLS

Compute a "local least squares" (LLS) approximation to detect outliers and other dubious time
information.

The algorithm will determine the timing quality from the squared residual error ("misfit") of
an individual time tag compared to a fitted line through the respective surrounding time tags.
Any unexpected large misfit is a good indicator for the presence of a "bad" time tag (e.g. an
outlier). All suspicious time tags are excluded from further processing.

This is the default timing quality control algorithm.

RULE

Do a rule-based evaluation of the time tags. The rules are predefined and hard-coded into the
program. They were determined by trial and error.

NONE

Skip quality control altogether! This will use any available timing information without
further qualification.

FAKE

This "quality control" algorithm will completely overwrite any time information recorded in
a Cube trace with a made-up fake time. (All trace start times are set to 1970-01-01 00:00.)
Obviously, this will completely screw up the timing information! Use it at your own risk.

Using the FAKE time algorithm will only succeed if the --fringe
-samples=NOMINAL command line option is used as well.

The main advantage of the LLS algorithm is its flexibility. It was designed to adapt to different

3

situations and to handle different time keeping hardware as well. The RULE based algorithm is
faster and much simpler. However, the fixed rule set only works effectively for anticipated
situations and is limited to the current build-in and well-known GPS hardware. Future Cube
generations e.g. will probably require an updated set of rules to reliably detect bad time tags due
to different time keeping hardware. The NONE "algorithm" basically disables any timing quality
control. It should only be used if you can trust all time tags unconditionally (or do not care).
Finally, the FAKE time algorithm is intended for worst case scenarios only, where a user
absolutely must recover a Cube data stream that cannot be processed normally due to total lack
of (recorded) timing information. By adding a fake time the Cube file(s) becomes "processable"
again, although at the price of a completely made-up time information.

In addition to the above listed algorithms, recorded time tags are also screened for overall data
integrity (range check, checksum) and completeness. Also, there a certain hardware limitation
common to all recorders of the Cube family that occasionally cause individual time tags to be
discarded. This is done transparently in the background and before any of the above algorithms
are applied. This cannot be influenced by the user!

--fringe-samples=MODE

Cube recordings basically consist of a continuous stream of sample (amplitude) values, where
occasional a single sample is additionally time stamped with the precise time of its recording
(taken from GPS). This command line options determines how to treat samples that were
recorded before the first GPS time fix or after the last GPS time fix taken by the Cube unit.
Determining the precise recording time of these "fringe samples" is problematic because without
a second time tag on the other side of the sample, the precise sampling rate inside that segment
cannot be computed. Valid options are:

SKIP

Simply exclude all samples without good time control from the conversion. (Default)

NOMINAL

Include fringe samples assuming a perfect nominal sample rate (e.g. 50 Hz, 100 Hz, 200 Hz,
etc.; as configured in the Cube recorder setup).

CONSTANT

Include fringe samples assuming a constant (linear) clock drift over the whole recording. The
clock drift is calculated from the very first and last available GPS fix in the recording.

Usually, a Cube recording contains only about one second of data before the very first GPS time
fix occurs. At the end of recording, the time without GPS fix depends on the recorder
configuration. (GPS running continuous or in cycled mode? How long is the cycle?) So, unless
you power down and pick up the Cube unit immediately after the recording there should be no
problem to just skip and ignore all fringe samples, which is the default behavior.

The situation is different however, when the Cube is deployed in locations without (reliable) GPS
reception, e.g. in water or underground in a tunnel. Especially, if the Cube runs out of power
before it can obtain a last GPS fix. Here it might become important to include any recorded
sample despite the lack of good (GPS) time control. For these cases the NOMINAL and CONSTANT
mode are intended.

4

--output-dir=DIRECTORY

Save the resulting seismic sections to this DIRECTORY. The directory must already exist and be
writable! Already existing files in that directory will not be overwritten unless the option --force
-overwrite is used as well.

--force-overwrite

If this option is used, already existing files in the output directory will be overwritten without
mercy!

The default behavior however is not to overwrite already existing files. Instead a new file is
created with an additional number in between filename and extension.

--force-concat

Use this option to concatenate all resulting shot/receiver gathers into a single file. This can be
useful if you plan to import the gathers into other software packages for further processing. (You
only need to import one single file instead of many different files.)

By default however, a new output file is created for every single gather created.

--segy-format=FORMAT

+

Select one of the following predefined output formats:

SEGY

Standard SEG-Y revision 1 (default).

SUOLD

Seismic Unix (old) native binary format.

SUXDR

Seismic Unix platform independent XDR format.

--project=FILE

Use this mandatory option to indicate the file describing the experiment setup. For a detailed
description of the file format see the project file section below.

 Sometimes, this file is also called the "master" or the "geometry" file.

--shot-gather=FFIDs

The resulting seismic sections are organized as shot gather. If no FFID range is specified, the
program will try to write a seismic section for every FFID found in the projects (geometry)
configuration file (see project file section below).

Alternatively, you can also specify a comma separated list of single FFIDs or ranges of FFIDs. Use
two dots between the first and last FFID to specify a range. Please note that FFID lists and ranges
must not contain any space characters!

5

Example: To produce seismic sections of the shots with FFID 1, 4, 5 and 6 you could use --shot
-gather=1,4..6.

--receiver-gather=CHANNELS

The resulting seismic sections are organized as receiver gather. If no CHANNEL range is given,
the program will try to write a seismic section for every channel found in the projects
(geometry) configuration file (see project file section below).

Alternatively, you can also specify a comma separated list of single channels or ranges of
channels. Use two dots between the first and last channel to specify a range. Please note that
channel lists and ranges must not contain any space characters!

Example: To produce seismic sections for receivers with the channel ids 10, 11, 24, 25 and 26 you
would use --receiver-gather=10,11,24..26.

--trace-length=DURATION

Length of the traces in the resulting seismic section. The DURATION is given in seconds.
Fractions of seconds will be rounded to microsecond accuracy. If there are not enough samples
in the input, the trace in the seismic section will be padded. The default trace length is one
minute.

Example: Use --trace-length=120 to obtain two minute long seismic sections consisting of 12000
samples per trace (assuming input data recorded at 100 Hz). To produce 12001 samples per trace
you would use --trace-length=120.01 as command line option.

--trace-offset=SHIFT

Use this option to shift the start time of the traces in the seismic section relative to the trigger
time of the shot (as read from the project file). The SHIFT is given in seconds. If no time offset is
given, the program will default to begin the trace as close as possible to shot time.

Example: To start the seismic section 2 seconds before the shot time use --trace-offset=-2. (Note
the minus sign! No spaces!)

--reduction-velocity=VELOCITY

Add a time delay proportional to the distance between source and receiver to every trace in the
seismic section. This factor, more commonly known as reduction velocity, is given in meters per
second. By default no reduction velocity is applied.

The distance between source and receiver point is calculated using the coordinates in the project
file (see project file section below). Obviously, applying a reduction velocity must fail If the
project file only contains dummy / place holder coordinates!

Project file
A project file plays an important role when building shot or receiver gathers as it contains a
description of experiment setup. Chiefly, this are geographic locations as well as time information.

Project files are simple text files where every (non-comment) line represents one source or receiver
point of the experiment. The general syntax rules are:

6

1. Everything from a # character up to the end of line is considered to be a comment (and will be
ignored by the program).

2. All empty lines are ignored as well.

3. Any sequence of space characters or tab-stops in a line containing (any) text will be interpreted
as column separator! The use of spaces inside (column) strings is not supported.

The number and content of the different columns varies. Lines describing seismic sources ("shots")
will e.g. contain the location and trigger time of the source. Receiver lines, however, describe where
and when the recorders were operating. The following listing is an example describing three blasts
(the "seismic sources") carried out during an experiment in South Africa.

--
name lat/lon/elev ffid shot time optional
--

S s21 -33.1968 22.0695 579 1 2005-11-17T06:05:01.170 7.5
S s32 -33.1882 22.0644 566 2 2005-11-17T06:36:29.593 5.0 10
S s41 -33.1767 22.0592 540 3 2005-11-17T07:12:36.225 7.5

In detail the columns of source point lines have the following meaning:

Column #1

Every source point line must start with the character S in the first text column. (The software
uses this as indicator to distinguish Source point lines from lines describing receiver points.)
Capitalization does not matter.

Column #2

The second "name" column contains an arbitrary text string that makes it easier for humans to
work with this file. You can place a description of the source point here ("at_yellow_house"),
mileage along the profile, a stake number or anything else you think might be helpful.

This column is only used for user feedback by the GIPPtools software and its
content will not appear in the resulting seismic section. You can also just use the
same dummy string for each source point line. However, the column must
exist! Otherwise the software will get out of sync and try to interpret the
following longitude column as latitude, elevation values as longitudes, etc.)

Column #3, #4, and #5

The next three columns define the location of the source point (latitude, longitude and elevation
in that order). Latitude and longitude should be given in decimal degrees. Latitudes south of the
equator are negative as well as longitudes west of Greenwich. Elevation should be given in
meters. If you dont have the coordinates of your source points (yet) use some dummy values
(like 0.0). The coordinates given here are entered into the SEG-Y trace header.

The coordinates are also used to calculate the absolute (i.e. non-negative) distance between
source and receiver, which is required when applying a seismic reduction velocity to the seismic
section (option --reduction-velocity).

7

Column #6

The sixth column is the Field File IDentification (FFID). Every source point must have a unique
(positive integer) FFID assigned to it. The FFID will be entered into the resulting SEG-Y trace
header. Usually, seismic processing software will use this number to identify the recorded traces.

Column #7

The trigger time of the seismic source goes into the seventh column. It consists of date and time
information given in ISO-8601 format (example: 2005-11-17T16:05:01.170). All programs of the
GIPPtools package resolve time down to microseconds.

Use 'T' or '_' (underscore) to concatenate date and time. If you use a space
character instead, the time information will be interpreted as the next
(optional) column.

Column #8, #9, …

The date/time information is followed by a variable number of optional columns. Unlike the
previous columns no place holder / dummy entry is needed if no value is available!

The intended use for these columns is to transport arbitrary, additional information that may be
required later by further processing steps into the resulting seismic section (e.g. "amount of
explosives used" or "water depth"). If optional columns are used, the value given is always stored
as a 4 byte IEEE-754 floating point number. The value of the first optional column is entered into
the 240 byte long SEG-Y trace header at its end (bytes #237 to #240). A following second optional
value is placed right before the value of the first column (bytes #232 to #236). The third optional
again is placed before the second (at #228 to #231) and so on.

If you use to many optional values (there is no hard limit build into the
software) you will begin to overwrite important fields in the SEG-Y trace
header.

Unlike the variable length source point lines, receiver point lines always contain ten values
(columns) describing the equipment used during the measurement, when they were recording data
and where they were located while doing so. The following listing again is an example.

--
name lat/lon/elev chan recorder start stop
--

R rp1 -33.2133 22.0783 598 1 e3168 p0 2005-11-13 2005-11-19
R rp2 -33.2125 22.0780 598 2 e3168 p1 2005-11-13 2005-11-19
R rp3 -33.2116 22.0777 597 3 e3168 p2 2005-11-14 2005-11-19
R rp4 -33.2110 22.0775 597 4 e3185 p0 2005-11-14 2005-11-20
R rp5 -33.2102 22.0773 595 5 e3185 p1 2005-11-14 2005-11-20
R rp6 -33.2093 22.0769 596 6 e3185 p2 2005-11-14 2005-11-20
R rp7 -33.2083 22.0765 594 7 e3130 p0 2005-11-15 2005-11-20
R rp8 -33.2074 22.0763 594 8 e3130 p1 2005-11-15 2005-11-20
R rp9 -33.2065 22.0760 593 9 e3130 p2 2005-11-15 2005-11-21

8

In detail the columns of receiver point lines have the following meaning:

Column #1

Every receiver point line must start with the character R in the first column. (The software uses
this as indicator to distinguish Receiver point lines from lines describing source points.)
Capitalization does not matter.

Column #2

The second name column is an arbitrary text string that makes it easier for humans to work
with this file. You can place a description of the receiver point here ("close_to_big_tree"), mileage
along the profile, a stake number or anything else you think might be helpful.

This column is only used for user feedback by the GIPPtools software and its
content will not appear in the resulting seismic section. You can also just use the
same dummy string for each receiver point line. However, the column must
exist! Otherwise the software will get out of sync and try to interpret the
following longitude column as latitude, elevation values as longitudes, etc.)

Column #3, #4, and #5

The next three columns define the location of the receiver point (latitude, longitude and
elevation in that order). Latitude and longitude should be given in decimal degrees. Latitudes
south of the equator are negative as well as longitudes west of Greenwich. Elevation should be
given in meters. If you dont have the coordinates of your receiver points (yet) use some dummy
values (like 0.0).

The coordinates are also used to calculate the absolute (i.e. non-negative) distance between
source and receiver, which is required when applying a seismic reduction velocity to the seismic
section (option --reduction-velocity).

Column #6

The sixth column is the channel number. Each receiver point in the experiment must have an
unique positive integer channel number assigned to it. The channel number will be entered into
the resulting SEG-Y trace header. Usually seismic processing software will use this number to
identify the recorded traces.

Do not confuse this (experiment/profile unique) channel number with the
instrument recording channel (see column #8).

Column #7 and #8

The next two columns are needed to locate the data in recorded files. Column seven contains the
recorder unit name used to record the data at. At the GIPP this is usually a five character long
string like "c0043" for Cube data logger.

Column eight is used to indicate the recording channel of the respective recording unit. Possible
values are p0 to p2 for the (primary) recording channels of a three channel Cube data logger.

9

If you are unsure about the correct values to enter use the cubeinfo utility to
inspect your input data. The program can list the "correct" recorder unit id and
the recorder channel name.

Column #9 and #10

The last two columns describe the begin and end of the recording. They consist of date and time
information given in ISO-8601 format (example: 2005-11-17T16:05:01.170). Depending on your
experiment setup it may be enough to give just date information. But if you enter also time of
day information here, you should at least specify hour and minutes. (Without time of day
information "midnight" of the respective day is assumed.)

Use 'T' or '_' (underscore) to concatenate date and time. If you use a space
character instead, the time information will be interpreted correctly.

Environment
The following environment variables can optionally be used to influence the behavior of the
various GIPPtool utilities during startup.

GIPPTOOLS_HOME

This environment variable is used to find the location of the GIPPtools installation directory. In
particular, the Java class files that make up the GIPPtools are expected to be in the java
subdirectory of GIPPTOOLS_HOME.

GIPPTOOLS_JAVA

The utilities of the GIPPtools are written in the programming language Java and consequently
need a Java Runtime Environment (JRE) to execute. Use this variable to specify the location of
the JRE which should be used.

GIPPTOOLS_OPTS

You can use this environment variable for additional fine-tuning of the Java runtime
environment. This is typically used to set the Java heap size available to GIPPtool programs.

GIPPTOOLS_LEAP

The GIPPtools require up-to-date leap second information to correctly interpret Cube files.
Usually, this information is obtained from the leap-seconds.list file located in the config
subdirectory of the GIPPtools installation directory. This environment variable can be used to
provide a more up-to-date leap second list to GIPPtool programs.

It is usually not necessary to define any of those variables as suitable values should be selected
automatically. However, if the automatic detection build into the start script fails or you need to
choose between different GIPPtool or Java runtime releases installed on your computer, these
environment variables might become quite helpful to troubleshoot the situation.

10

Diagnostics
Occasional, the program will produce user feedback. In general, user messages are classified as
INFO, WARNING or ERROR. The INFO messages are only displayed when the --verbose command
line option is used. They usually report about the progress of the program run.

More important are WARNING messages. In general, they warn about (possible) problems that may
influence the output. Although the program will continue with execution, you certainly should
check the results carefully. You might not have gotten what you (thought you) asked for. Finally,
ERROR messages inform about problems that can not be resolved automatically. Program execution
usually stops and the user must fix the problem first.

Exit codes
Use the following exit codes when calling the GIPPtool utility from scripts or other programs to see
if finished successfully. Any non-zero code indicates an ERROR.

0

Success.

64

Command line syntax or usage error.

65

Input data error.

66

Input file did not exist or could not be opened.

70

Error in internal program logic.

74

I/O error.

99

Other, unspecified errors.

Examples
1. To prepare seismic sections use:

*cube2segy --shot-gather --project=example.project ./data/

This will produce a shot gather for every source point defined in the example.project file. The

11

Cube data will be read from the data directory and the seismic section will be written to the
current working directory.

2. Prepare seismic sections for the shots with FFID 2001 and 2002 only.

cube2segy --shot-gather=2001,2002 --project=example.project ./data/

3. Apply a reduction velocity of 6.5 km/s and shift all traces by half a second towards earlier times.

cube2segy --shot-gather --project=example.project --reduction-velocity=6500 --trace
-offset=-0.5 ./data/

4. Create seismic section in the new (XDR) Seismic Unix format

cube2segy --shot-gather --project=example.project --segy-format=suxdr ./data/

Files
$GIPPTOOLS_HOME/bin/cube2segy

The cube2segy "program". Usually just a symbolic link pointing to the standard GIPPtools start
script.

$GIPPTOOLS_HOME/bin/gipptools

The GIPPtools start script. Almost all utilities of the GIPPtools package are started from this shell
script.

See also
gipptools(1), cube2ascii(1), cube2mseed(1), cubeevent(1), cubeinfo(1), mseed2ascii(1),
mseed2mseed(1), mseed2pdas(1), mseed2segy(1), mseedcut(1), mseedinfo(1), mseedrecover(1),
mseedrename(1)

Bugs and caveats
• The program does not (yet) support Cartesian coordinate systems. Shot and receiver point

positions must be given as degrees latitude and degrees longitude.

12

	cube2segy(1)
	Synopsis
	Description
	Options
	Project file
	Environment
	Diagnostics
	Exit codes
	Examples
	Files
	See also
	Bugs and caveats

