Alexander Czeh, German Aerospace Center, Institute of Transport Research

The Potential of the Traffic Transformation towards Sustainable Mobility for the Re-design of the Urban Environment to Improve the Supply of Space for the Housing Market

GIS Day 2019, 13.11.2019, Potsdam
Agenda

0 Overview
I Social, Environmental and Academic Relevance
II State of the Art in Research / Research Gaps
III Research Questions
IV Methodological Approach
V Milestones
VI Research Plan and Timetable
VII Literature
VIII Discussion
0 Overview

Effect I
Redistribution of Road Space in Favor of SM (MobG)

Effect II
Potential of
Off-street Automobile Infrastructure?

Research Question
How much automobile infrastructure is required for SM? How many flats could be built if traffic transformation takes place?

-35%
-35%
-40%
I Social, Environmental and Academic Relevance

Socially
- Need for traffic transformation
- Focus on electrification, sharing and autonomous driving
- Potentials of behavior change neglected
- Political action is missing, car dependency backed by massive subsidies
- Housing crisis

Environmentally
- Focus on air pollution and emission of climate relevant gases
- Carbon-free transport 2050 Berlin, -95% until 2050 (11.5 Verkehr (BEK), Berliner Energiewende- und Klimaschutzprogramm)
- Land use mostly neglected

Academically
- Focus on the distribution of road space (Nello-Deakin 2019: Amsterdam and Gössling et al. 2016: Freiburg)
- “The distribution of urban mobility space and its “fairness” has so far not been quantified both rigorously and on large scale” (Szell 2018)
- Off-street space consumption of automobile infrastructure neglected
II State of the Art in Research / Research Gaps

“The distribution of urban mobility space and its “fairness” has so far not been quantified both rigorously and on large scale” (Szell 2018)

Research Gaps

- The status quo analysis of the space consumption of overall automobile infrastructure
 - car repair shops, tyre retailers, filling stations, car dealerships, car wash facilities and car parks, rental services

- The correlation between traffic transformation and space allocation of off-street automobile infrastructure

- Research dealing holistically with the fields of transport & urban planning (urban design, transport policy)
III Research Questions

The Potential of the Traffic Transformation towards Sustainable Mobility for the Re-design of the Urban Environment to Improve the Supply of Space for the Housing Market

A) Best practices of redistribution of automobile infrastructure - paper 1
 - What are the best practices?
 - Where?
 - Which effects through redistribution?

B) Status quo of space consumption of automobile infrastructure in Berlin (+Amsterdam) - paper 2
 - How much?
 - Which kind of automobile infrastructure?
 - Ratio to other land use?
 - Correlation to socio-economic patterns?

C) Space gains of traffic transformation in the normative scenario for Berlin (+Amsterdam)
 - Scenario of carbon-free sustainable transport in 2050?
 - Modal-shares and motorisation rates in normative scenario?
 - Space gains per type of infrastructure?

D) What Potential for the housing market could be derived by the space gains? - paper 3
 - Is the gained space from automobile infrastructure usable for the housing market?
 - How many flats could be built (based on international standards) on the gained space?
III Research Questions

Optional

E) Alternative usages of the space gains
 - Urban agriculture
 - Climate change adaption measures (greening, water supply, shadow, seating)

F) Policy recommendations
 - How has a traffic transformation to look like to lever the potentials?
 - Which kind of political action is required to lever the potential of the traffic transformation for the housing market?
IV Methodological Approach

A) Best Practice Analysis
- best practices of redistribution of space of automobile infrastructure
- cities, kind of infrastructure, redistributed towards alternative usages like housing, climate adaptation measures, urban agriculture
- traffic, environmental & social effects caused by the redistribution
- Interactive website with examples of off-street infrastructure transformation in Berlin

B) Status Quo Analysis
- status quo analysis for space consumption per kind of automobile infrastructure
- GIS modal Berlin (+other?)
- analysis for automobile infrastructure (car repair shops, car rental, tyre retailers, filling stations, car dealerships, car wash facilities and car parks)
- analysis of socio-economic and land-use patterns

C) Normative Sc. Analysis
- on basis of selected scenario for carbon free transport in 2050
- derivation of space consumption per automobile infrastructure
- comparison of space consumption status quo and carbon free scenario
- calculation, allocation and mapping of net space gains in the carbon free scenario

D) Explorative Analysis
- spatial analysis of gained space about usability for housing
- analysis based on zoning plans, access to transport, education, noise register, etc.
- classification of space regarding its potential for the housing market
- calculation of the potential amount of flats which could be built due to the traffic transformation
IV Methodological Approach - Best Practice Analysis

- Choice of cities e.g.: Oslo, Odense, Barcelona, Genk, Berlin, Seoul, Amsterdam
IV Methodological Approach - Status Quo Analysis I

- Status Quo Analysis of space consumption of automobile infrastructure in Berlin
- Examination of the correlation of space consumption of automobile infrastructure in to urban patterns like modal share, housing, income, population density etc.

Data Base

- Desktop research including various sources like
 - open data esri
 - geofabrik
 - osm
 - Amt für Statistik Berlin-BB
 - fis broker Berlin
 - street view
 - google earth
 - satellite pictures
 - Eurostat
 - Data from societies, networks like „Bundesverband Tankstellen und Gewerbliche Autowäsche“

Type of Infrastructure

<table>
<thead>
<tr>
<th>Type of Infrastructure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Recycling</td>
<td>Locations p. type of infrastr.</td>
</tr>
<tr>
<td>Car Repair Shops</td>
<td>Size p. type of infrastr.</td>
</tr>
<tr>
<td>Parking</td>
<td>Correlation to urban patterns Like land value, unemployment rates, modal shares, districts, density etc.</td>
</tr>
<tr>
<td>Tyre Sellers</td>
<td>Densities per type of infrastructure</td>
</tr>
<tr>
<td>Filling Stations</td>
<td></td>
</tr>
<tr>
<td>Car Dealerships</td>
<td></td>
</tr>
<tr>
<td>Car Wash Facilities</td>
<td></td>
</tr>
<tr>
<td>Car Rental Business</td>
<td></td>
</tr>
</tbody>
</table>

- Column 1: Locations p. type of infrastr.
- Column 2: Size p. type of infrastr.
- Column 3: Correlation to urban patterns Like land value, unemployment rates, modal shares, districts, density etc.
- Column 4: Densities per type of infrastructure
IV Methodological Approach - Exploratory Analysis

- Net space gains of the normative scenario will be analysed about their potential for the housing market
- Tool: spatial gis analysis including layers for:
 - land use planning/ zoning plans
 - noise register
 - PT access
 - Access to education etc.
- Output 1: Classification of the space reg. usability for:
 - A) housing
 - B) other (urban agriculture, climate change adapt. meas.)
 - C) not usable
- Output 2: Ranking classification of the space reg. usability for:
 - The spaces which are usable for housing will be ranked based on expert interviews
- The gis software will be based on open source (quantum gis)
V Milestones

1. State of the art traffic transformation and spatial justice research
2. Overview of best practices of redistribution of space from automobile infrastructure
3. Stakeholder identification
4. Development of gis-model Berlin
5. Mapping space consumption per mode of transport
6. Analysis of automobile infrastructure
7. Selection of normative (carbon-free) traffic transformation scenario
8. Calculation of modal share of the normative scenario
9. Analysis of space consumption of automobile infrastructure. in normative sc.
10. Calculation of additional space for SM
11. Comparison of space cons. normative sc. vs. status quo
12. Derivation of pot. space gains from automobile infrastructure in norm. sc.
14. Spatial analysis of pot. space gained from automobile infrastructure.
15. Classification of gained space
16. Ranking of space for housing market
17. Calculation of flats per scenario
18. Extrapolation for other districts of Berlin (+other city)
19. Potential for climate change adaption measures
20. Potential for urban gardening/ agriculture
21. Recommendations for policy action
22. Critical review of the dissertation
23. Derivation of additional research areas
VI Research Plan and Timetable

<table>
<thead>
<tr>
<th>Time Span</th>
<th>Research Topic</th>
<th>Milestones</th>
<th>Methodology</th>
<th>Chapter</th>
<th>MS</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>State of the art in research, terminology, best practices</td>
<td>State of the art traffic transformation and spatial justice research</td>
<td>Literature review</td>
<td>A)</td>
<td>1</td>
<td>Paper 1: Overview of best practices of redistributio...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of best practices of redistribution of space from automobile infrastructure</td>
<td>Literature review, field & desktop research</td>
<td></td>
<td>2</td>
<td>Paper 1: Overview of best practices of redistributio...</td>
</tr>
<tr>
<td>SS 20</td>
<td>Status quo analysis, spatial justice</td>
<td>Stakeholder identification</td>
<td>Desktop research</td>
<td>B)</td>
<td>3</td>
<td>Paper 2: Spatial analysis of off-street automobil...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development of gis-model Berlin</td>
<td>GIS-model, field research</td>
<td></td>
<td>4</td>
<td>Paper 2: Spatial analysis of off-street automobil...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mapping space consumption per kind of automobile infrastructure</td>
<td></td>
<td></td>
<td>5</td>
<td>Paper 2: Spatial analysis of off-street automobil...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis of automobile infrastructure (correlation to spatial patterns)</td>
<td></td>
<td></td>
<td>6</td>
<td>Paper 2: Spatial analysis of off-street automobil...</td>
</tr>
<tr>
<td>WS 20</td>
<td>Scenario analysis</td>
<td>Selection of normative (carbon-free) traffic transformation scenario</td>
<td>Scenario review</td>
<td>C)</td>
<td>7</td>
<td>Paper 3: Potential of traffic transformation for the housing market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculation of modal share of the normative scenario</td>
<td>GIS-model</td>
<td></td>
<td>8</td>
<td>Paper 3: Potential of traffic transformation for the housing market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis of space consumption of automobile infrastr. in norm. sc.</td>
<td></td>
<td></td>
<td>9</td>
<td>Paper 3: Potential of traf...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculation of additional space for SM</td>
<td></td>
<td></td>
<td>10</td>
<td>Paper 3: Potential of traffic transformation...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison of space cons. normat. sc. vs. status quo</td>
<td></td>
<td></td>
<td>11</td>
<td>Paper 3: Potential of traffic transformation...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derivation of pot. space gains from autom. infra. in norm. sc.</td>
<td></td>
<td></td>
<td>12</td>
<td>Paper 3: Potential of traffic transformation...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of potent. space gains p. kind of automobile infrastr.</td>
<td></td>
<td></td>
<td>13</td>
<td>Paper 3: Potential of traffic transformation...</td>
</tr>
<tr>
<td>SS 21</td>
<td>Deployment of the scenarios in the gis model</td>
<td>Spatial analysis of pot. space gained from automobile infrastr.</td>
<td>GIS-model</td>
<td>D)</td>
<td>14</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classification of gained space</td>
<td>Expert interviews, gis-model</td>
<td></td>
<td>15</td>
<td>Optional: Policy Recommendati...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ranking of space for housing market</td>
<td></td>
<td></td>
<td>16</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculation of flats per scenario</td>
<td></td>
<td></td>
<td>17</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extrapolation for other districts of Berlin (+other city)</td>
<td></td>
<td></td>
<td>18</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Examination of usability for housing market</td>
<td>Spatial analysis of pot. space gained from automobile infrastr.</td>
<td>GIS-model</td>
<td>E)</td>
<td>19</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classification of gained space</td>
<td>Literature review, gis, expert interviews</td>
<td></td>
<td>20</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td>SS 22</td>
<td>Alternative space usage</td>
<td>Potential for climate change adaption measures</td>
<td></td>
<td>F)</td>
<td>21</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential for urban gardening/ agriculture</td>
<td></td>
<td></td>
<td>22</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommendations for policy action</td>
<td></td>
<td></td>
<td>23</td>
<td>Optional: Policy Recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derivation of additional research areas</td>
<td></td>
<td></td>
<td></td>
<td>Optional: Policy Recommendations</td>
</tr>
</tbody>
</table>
VII Literature

- BUND et al. (2014). Klimafreundlicher Verkehr in Deutschland.
- Holm et al. (2018). Wie viele und welche Wohnungen fehlen in deutschen Großstädten?
- Oekoinstitut et al. (2016). Sektorale Emissionspfade in Deutschland bis 2050 - Verkehr.
VIII Discussion

Your questions and input, please!