GlobFluo

The GlobFluo project (Global assessment of vegetation photosynthesis through the monitoring of chlorophyll fluorescence from space, GU 1276/1-1) is funded by the Emmy Noether programme of the Deutsche Forschungsgemeinschaft. The objective of the project is to implement a so-called junior research group focused on the space-based monitoring of the sun-induced fluorescence signal emitted by vegetation. Our work deals with both technical aspects related to the estimation of fluorescence from spaceborne spectroscopic measurements and the interpretation and exploitation of the resulting global data sets for a global-scale assessment of photosynthetic processes. The global fluorescence data sets derived in GlobFluo are made freely available to the user community.

Research

The gross carbon uptake of terrestrial vegetation through photosynthesis is a crucial parameter in climate change research. A global, observation-based characterisation of ecosystem gross primary production (equivalent to ecosystem gross photosynthesis) can only be performed with satellite measurements. However, the traditional description of vegetation productivity from space is based on the so-called spectral vegetation indices, which are better indicators of the potential plant photosynthesis than of the actual photosynthetic efficiency driving carbon assimilation. This results in an inherent limitation of existing satellite products to provide an accurate description of ecosystem functioning.

By contrast, ongoing developments in instrument design and modelling approaches have facilitated the retrieval of vegetation sun-induced chlorophyll fluorescence from space measurements. Chlorophyll fluorescence is an electromagnetic signal emitted by the chlorophyll-a of green leaves: part of the solar energy absorbed by chlorophyll is not used for photosynthesis, but emitted at longer wavelengths as a two-peak spectrum roughly covering the 650–850 nm spectral range. A vast number of laboratory and field experiments have demonstrated that chlorophyll fluorescence is a direct proxy to vegetation light use efficiency which can therefore enable a much more accurate description of gross primary production.

GlobFluo is focused on the global monitoring and interpretation of chlorophyll fluorescence from existing and upcoming Earth Observation missions. This is implemented as a multi-disciplinary approach involving the development of a variety of atmospheric-surface radiative transfer modelling approaches, data processing and information retrieval techniques and ecosystem modelling tools, with the ultimate objective of developing a new approach to the observation of carbon assimilation by vegetation from space. Our work is organized in three major tasks as follows.

→ Global retrievals of fluorescence from space

→ Interpretation and exploitation of global fluorescence data

→ Process-based modeling of chlorophyll fluorescence and photosynthesis

Spectrum of the radiation reflected by a green vegetation canopy and measured at the satellite level together with a spectrum of sun-induced chlorophyll fluorescence. The retrieval of chlorophyll fluorescence from space consists in the decoupling of the reflected radiance spectrum from the much less intense fluorescence signals. Global fluorescence retrievals have recently been achieved thanks to the high spectral and radiometric sensitivity of spaceborne atmospheric spectrometers such as GOSAT, SCIAMACHY and GOME-2 (figure by Luis Guanter)

Data

We have produced global data sets of terrestrial fluorescence from GOME-2 and SCIAMACHY satellite sensors. Netcdf files of the daily gridded SIF retrieval output can be downloaded from the following links:

  • GOME-2 ( 01/2007-01/2012, 0.5° x 0.5° spatial resolution)

ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/GOME-2/

  • SCIAMACHY (08/2002-03/2012,1.5° x 1.5° spatial resolution )

ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/SCIAMACHY/

 

[Reference: Köhler, P., Guanter, L., and Joiner, J.: A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data, Atmos. Meas. Tech., 8, 2589-2608, doi:10.5194/amt-8-2589-2015, 2015.
http://www.atmos-meas-tech.net/8/2589/2015/amt-8-2589-2015.html]

 

Please, contact Philipp Köhler if you intend to use those data sets for your research, especially if the data are to be included in any publication. Any feedback on data quality or potential issues is highly welcome!

Team

From left to right: Max, Philipp, Sophia, Yongguang and Luis

Publications

(This list comprises all GlobFluo publications in peer-reviewed journals and dealing with chlorophyll fluorescence since April 2012)

45. Walther, S., Guanter, L., Heim, B., Jung, M., Duveiller, G., Wolanin, A., and Sachs, T.: Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis, Biogeosciences, 15, 6221-6256, doi.org/10.5194/bg-15-6221-2018, 2018

44. Köehler, P., C. Frankenberg, T.S. Magney, L. Guanter, J. Joiner, and J. Landgraf. (2018), Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter‐sensor comparison to OCO‐2, Geophys. Res. Lett., 45. doi.org/10.1029/2018GL079031

43. Xinjie Liu, Luis Guanter, Liangyun Liu, Alexander Damm, Zbyněk Malenovský, Uwe Rascher, Dailiang Peng, Shanshan Du, Jean-Philippe Gastellu-Etchegorry, Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model, Remote Sensing of Environment, Available online 19 June 2018, ISSN 0034-4257, doi.org/10.1016/j.rse.2018.05.035

42. Song, L. , Guanter, L. , Guan, K. , You, L. , Huete, A. , Ju, W. and Zhang, Y. (2018), Satellite sun‐induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo‐Gangetic Plains. Glob Change Biol. Accepted Author Manuscript. doi:10.1111/gcb.14302

41. Yongguang Zhang, Luis Guanter, Joanna Joiner, Lian Song, Kaiyu Guan, Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data, Remote Sensing of Environment, Volume 210, 1 June 2018, Pages 362-374, ISSN 0034-4257, doi.org/10.1016/j.rse.2018.03.031.

40. Ying Sun, Christian Frankenberg, Martin Jung, Joanna Joiner, Luis Guanter, Philipp Köhler, Troy Magney (2018), Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 2018 doi.org/10.1016/j.rse.2018.02.016

39. Colombo, R., Celesti, M., Bianchi, R., Campbell, P. K. E., Cogliati, S., Cook, B. D., Corp, L. A., Damm, A., Domec, J.-C., Guanter, L., Julitta, T., Middleton, E. M., Noormets, A., Panigada, C., Pinto, F., Rascher, U., Rossini, M. and Schickling, A. (2018 online), Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest. Glob Change Biol. Accepted Author Manuscript. doi:10.1111/gcb.14097

38. Natasha MacBean, Fabienne Maignan, Cédric Bacour, Philip Lewis, Philippe Peylin, Luis Guanter, Philipp Köhler, Jose Gómez-Dans & Mathias Disney, Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, volume 8, Article number: 1973 (2018), doi:10.1038/s41598-018-20024-w

37. Yao Zhang, Xiangming Xiao, Yongguang Zhang, Sebastian Wolf, Sha Zhou, Joanna Joiner, Luis Guanter, Manish Verma, Ying Sun, Xi Yang, Eugénie Paul-Limoges, Christopher M. Gough, Georg Wohlfahrt, Beniamino Gioli, Christiaan van der Tol, Nouvellon Yann, Magnus Lund, Agnès de Grandcourt, On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals, Remote Sensing of Environment, Volume 205, February 2018, Pages 276-289, ISSN 0034-4257, doi.org/10.1016/j.rse.2017.12.009. (https://www.sciencedirect.com/science/article/pii/S0034425717305801)

36. Philipp Köhler, Luis Guanter, Hideki Kobayashi, Sophia Walther, Wei Yang, Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests, In Remote Sensing of Environment, Volume 204, 2018, Pages 769-785, ISSN 0034-4257, doi.org/10.1016/j.rse.2017.09.025. (http://www.sciencedirect.com/science/article/pii/S0034425717304376)

35. Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köhler, B. Evans, K. Yuen: OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence, Science Vol. 358, Issue 6360, 13 Oct 2017, science.sciencemag.org/content/358/6360/eaam5747, DOI: 10.1126/science.aam5747

34. Philipp Köhler, Luis Guanter, Hideki Kobayashi, Sophia Walther, Wei Yang, Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests, In Remote Sensing of Environment, 2017, , ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.09.025. www.sciencedirect.com/science/article/pii/S0034425717304376

33. Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., and Quegan, S.: Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems, Biogeosciences, 14, 3401-3429, https://doi.org/10.5194/bg-14-3401-2017, 2017.

32. Middleton, E.M.; Rascher, U.; Corp, L.A.; Huemmrich, K.F.; Cook, B.D.; Noormets, A.; Schickling, A.; Pinto, F.; Alonso, L.; Damm, A.; Guanter, L.; Colombo, R.; Campbell, P.K.E.; Landis, D.R.; Zhang, Q.; Rossini, M.; Schuettemeyer, D.; Bianchi, R. The 2013 FLEX—US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA. Remote Sens. 2017, 9, 612.     

31. Thum, T., Zaehle, S., Köhler, P., Aalto, T., Aurela, M., Guanter, L., Kolari, P., Laurila, T., Lohila, A., Magnani, F., Van Der Tol, C., and Markkanen, T.: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe, Biogeosciences, 14, 1969-1987, doi:10.5194/bg-14-1969-2017, 2017.

30. Thum, T., Zaehle, S., Köhler, P., Aalto, T., Aurela, M., Guanter, L., Kolari, P., Laurila, T., Lohila, A., Magnani, F., Van Der Tol, C., and Markkanen, T.: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe, Biogeosciences Discuss., doi:10.5194/bg-2016-514, 2016. 

29. Ma, X., Huete, A., Cleverly, J., Eamus, D., Chevallier, F., Joiner, J., Poulter, B., Zhang, Y., Guanter, L., Meyer, W., Xie, Z., Ponce-Campos, G. (2016). Drought rapidly disseminates the 2011 large CO2 uptake in semi-arid Australia. Scientific Reports, 6. doi: 10.1038/srep37747.

28. Yongguang Zhang, Luis Guanter, Joseph A. Berry, Christiaan van der Tol, Xi Yang, Jianwu Tang, Fangmin Zhang, Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications, Remote Sensing of Environment, Volume 187, 15 December 2016, Pages 145-155, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2016.10.016.

27. Joiner, J., Yoshida, Y., Guanter, L., and Middleton, E. M.: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939-3967, doi:10.5194/amt-9-3939-2016, 2016. 

26.  Yao Zhang, Xiangming Xiao, Cui Jin, Jinwei Dong, Sha Zhou, Pradeep Wagle, Joanna Joiner, Luis Guanter, Yongguang Zhang, Geli Zhang, Yuanwei Qin, Jie Wang, Berrien Moore III, Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America, Remote Sensing of Environment, Volume 183, 15 September 2016, Pages 154-169, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2016.05.015.

25.  R. G. Detmers, O. Hasekamp, I. Aben, S. Houweling, T. T. van Leeuwen, A. Butz, J. Landgraf, P. Köhler, L. Guanter, and B. Poulter (2015), Anomalous carbon uptake in Australia as seen by GOSAT Geophys. Res. Lett., 42, 8177–8184, doi:10.1002/2015GL065161.

24. Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Koehler, P., Jung, M., Varlagin, A. and Guanter, L. (2015), Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Change Biol. Accepted Author Manuscript. doi:10.1111/gcb.13200 

23. K. Guan, J. Berry, Y. Zhang, J. Joiner, L. Guanter, G. Badgley, D.B. Lobell, "Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence", Glob Change Biol. Accepted Author Manuscript. doi:10.1111/gcb.13136, 2015.

22.  U. Rascher, L. Alonso, A. Burkart, C. Cilia, S. Cogliati, R. Colombo, A. Damm, M. Drusch, L. Guanter, J. Hanus, T. Hyvärinen, T. Julitta, J. Jussila, K. Kataja, P. Kokkalis, S. Kraft, T. Kraska, M. Matveeva, J. Moreno, O. Muller, C. Panigada, M. Pikl, F. Pinto, L. Prey, R. Pude, M. Rossini, A. Schickling, U. Schurr, D. Schüttemeyer, J. Verrelst and F. Zemek, "Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant", Global Change Biology, 2015.
DOI: 10.1111/gcb.13017 http://onlinelibrary.wiley.com/doi/10.1111/gcb.13017/citedby

21.  A. Damm, L. Guanter, E. Paul-Limoges, C. van der Tol, A. Hueni, N. Buchmann, W. Eugster, C. Ammann, M.E. Schaepman, "Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches", Remote Sensing of Environment, Volume 166, 1 September 2015, Pages 91-105, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2015.06.004

20.  J.-E. Lee, J. A. Berry,  C. van der Tol, X. Yang, L. Guanter, A. Damm, I. Baker and C. Frankenberg, "Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4", Global Change Biology, DOI: 10.1111/gcb.12948,  2015.

19.  L. Guanter, I. Aben, P. Tol,  J. Krijger, A. Hollstein, P. Köhler, A. Damm,  J. Joiner, C. Frankenberg, and J. Landgraf,  “Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence”, Atmos. Meas. Tech., 8, 1337-1352, doi:10.5194/amt-8-1337-2015, 2015.

18.  P. Köhler, L. Guanter, C. Frankenberg, "Simplified physically-based retrieval of sun-induced chlorophyll fluorescence from GOSAT data," IEEE Geoscience and Remote Sensing Letters, DOI 10.1109/LGRS.2015.2407051, 2015.

17.  M. Rossini, L. Nedbal, L. Guanter, A. Ac, L. Alonso, A. Burkart, S. Cogliati, R. Colombo, A. Damm, M. Drusch, J. Hanus, R. Janoutova, T. Julitta, P. Kokkalis, J. Moreno, J. Novotny, C. Panigada, F. Pinto, A. Schickling, D. Schüttemeyer, F. Zemek, and U. Rascher, “Red and far-red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis,” Geophysical Research Letters, pp. n/a–n/a, 2015.

16.  A. Damm, L. Guanter, W. Verhoef, D. Schläpfer, S. Garbari, and M. E. Schaepman, “Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data,” Remote Sensing of Environment vol. 156, pp. 202 – 215, 2015.

15.  L. Guanter, I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, and J Landgraf, “Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence,” Atmospheric Measurement Techniques Discussions, vol. 7 (12), pp. 12545 – 12588, 2014.

14.  P. Köhler, L. Guanter, J. Joiner, “A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data, Atmos. Meas. Tech., 8, 2589-2608, doi:10.5194/amt-8-2589-2015, 2015.

13.  N Zeng, F Zhao, GJ Collatz, E Kalnay, RJ Salawitch, TO West, L Guanter, “Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude,” Nature, vol. 515 (7527), pp. 394 – 397, 2014.

12.  J. Joiner, Y. Yoshida, A. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. Middleton, K. Huemmrich, L. Gu, and L. B. Marchesini, “The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange,” Remote Sensing of Environment, vol. 152, no. 0, pp. 375 – 391, 2014.

11.  L. Guanter, Y. Zhang, M. Jung, J. Joiner, M. Voigt, J. A. Berry, C. Frankenberg, A. R. Huete, P. Zarco-Tejada, J.-E. Lee, M. S. Moran, G. Ponce-Campos, C. Beer, G. Camps-Valls, N. Buchmann, D. Gianelle, K. Klumpp, A. Cescatti, J. M. Baker, and T. J. Griffis, “Reply to magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production,”  Proceedings of the National Academy of Sciences, vol. 111, no. 25, p. E2511, 2014.

10.  Y. Zhang, L. Guanter, J. A. Berry, J. Joiner, C. van der Tol, A. Huete, A. Gitelson, M. Voigt, and P. Köhler,  “Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models,” Global Change Biology, pp. n/a–n/a, 2014.

9.    L. Guanter, Y. Zhang, M. Jung, J. Joiner, M. Voigt, J. A. Berry, C. Frankenberg, A. R. Huete, P. Zarco Tejada, J.-E. Lee, M. S. Moran, G. Ponce-Campos, C. Beer, G. Camps-Valls, N. Buchmann, D. Gianelle, K. Klumpp, A. Cescatti, J. M. Baker, and T. J. Griffis, “Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence,” Proceedings of the National Academy of Sciences, vol. 111, no. 14, pp. E1327–E1333, 2014.

8.    A. Damm, L. Guanter, V. Laurent, M. Schaepman, A. Schickling, and U. Rascher, “FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data,” Remote Sensing of Environment, vol. 147, no. 0, pp. 256 – 266, 2014.

7.    C. Frankenberg, C. O’Dell, J. Berry, L. Guanter, J. Joiner, and P. Köhler, “Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2,” Remote Sensing of Environment, vol. 147, no. 0, pp. 1 – 12, 2014.

6.    J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg, “Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2,” Atmospheric Measurement Techniques, vol. 6, pp. 2803–2823, 2013.

5.    J.-E. Lee, C. Frankenberg, C. van der Tol, J. A. Berry, L. Guanter, C. K. Boyce, J. B. Fisher, E. Morrow, J. R. Worden, S. Asefi, G. Badgley, and S. Saatchi, “Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence,” Proceedings of the Royal Society B: Biological Sciences, vol. 280, 2013.

4.    C. Frankenberg, J. A. Berry, L. Guanter, and J. Joiner, “Remote sensing of terrestrial chlorophyll fluorescence from space,” SPIE Newsroom, 2013, doi: 10.1117/2.1201302.004725.

3.    L. Guanter, M. Rossini, R. Colombo, M. Meroni, C. Frankenberg, J. E. Lee, and J. Joiner, “Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space,” Remote Sensing of Environment, vol. 133, pp. 52–61, 2013.

2.    L. Guanter, C. Frankenberg, A. Dudhia, P. E. Lewis, J. Gomez-Dans, A. Kuze, H. Suto, and R. G. Grainger, “Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements,” Remote Sensing of Environment, vol. 121, pp. 236–251, 2012.

1.    C. Frankenberg, C. O’Dell, L. Guanter, and J. McDuffie, “Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals,” Atmospheric Measurement Techniques, vol. 5, no. 8, pp. 2081–2094, 2012.

Contact

Luis Guanter
Section Head
Prof. Dr. Luis Guanter
Remote Sensing
Telegrafenberg
Building A 17, Room 20.22
14473 Potsdam
+49 331 288-1190
Profile