Logo "GFZ German research centre for geo sciences"

Section 3.5: Interface Geochemistry

Current Research Projects

Helmholtz Recruiting Initiative Projects
Snow and ice algae in Greenland (dark zone)

Geochemistry and Carbon Dynamics of Arctic Ecosystems

Our research assesses the storage, dynamics, and fate of organic matter in snow and ice algae-dominated systems. We study dissolved and particulate organic matter via targeted and untargeted high-resolution mass spectrometry approaches in environmental samples and in situ experiments. The obtained information is evaluated in combination with the microbial community composition and glacier surface albedo, allowing us to improve our knowledge of the interplay between microbial metabolism, carbon cycling, and surface melting.

Struvite crystal under crossed polarized light

Struvite Crystallization

One of our current projects in this research theme aims to elucidate the homogeneous and heterogeneous crystallization pathways of struvite (MgNH4PO4·6H2O) – a prime magnesium phosphate mineral that can be recovered from wastewaters.

Microbial ‘Omics’ Focusing on Biodiversity and Physiology of Bacteria and Micro-eukaryotes

We are evaluating snow and ice algal communities, and their associated microbiome (i.e. bacteria, archaea, fungi) in various Arctic and Alpine settings by using a multi-disciplinary approach. We are also conducting high-throughput sequencing to reveal community compositions and dynamics as well as using a metabolomics approach to understand how their metabolome responds to changing environmental conditions.


Experimental Diagenesis and Mineral Transformation Phenomena of Sedimentary Carbonates and Sulphates

The primary objective of this project is to enhance our understanding of the intrinsic and extrinsic parameters (crystallographic, mineralogical, chemical, textural and microstructural) that govern the viability and kinetics of fluid-driven mineral replacement processes involving sedimentary sulphates and carbonates. To achieve this goal, we conduct experiments on the interaction of sulphates and carbonates, both biogenic and abiogenic, with aqueous fluids under conditions that mimic diagenesis.

Liquid Phase Transmission Electron Microscopy

In this project, we aim to understand how to minimize or exploit beam effect in the liquid cell to visualize the dynamic processes that occur at the nanoscale in native mineral/solution interfaces.

Clay Mineral Formation at Ambient Conditions

Our research in clay formation mechanisms focuses on the interface between a primary mineral and the solution as the mineral surface is first amorphized and then converted into a clay. Alternatively, a direct precipitation pathway is considered. We are interested in determining what conditions are necessary for clay formation to occur and how do changes in the reaction environment affect clay formation.

Third-Party Funded Projects


DEEP PURPLE is funded by the European Research Council (ERC) Synergy Grant. This project aims to establish the factors that control ice algal blooms that contribute to the darkening of the Greenland Ice Sheet, and ultimately the rapid melting of the ice sheet. DEEP PURPLE will quantify the synergies between the biology, chemistry and physics of ice algae micro-niches in rotting, melting ice, and examine the combination of factors which stabilize them.

Project period: 2020-2025



EXCITE (Electron and X-ray microscopy Community for structural and chemical Imaging Techniques for Earth materials) is funded by Horizon 2020 Research Infrastructures. This project brings together 15 leading institutions across Europe that develop and use electron and X-ray imaging techniques for Earth science applications.

Project period: 2021-2024

ETEX logo


The aim of the project is to improve our understanding on how different additives used in gypsum board formulations affect the kinetics and mechanisms of gypsum crystallization and the microstructure of the resulting gypsum matrix. This project is in collaboration with ETEX.

Project period: 2022-2025

[Translate to English:] ICEBIO logo


ICEBIO's mission is to train predoctoral researchers in glacier microbiology and biogeochemistry. The ICEBIO consortium comprises 6 leading research teams across Europe (Denmark, France, Germany, Norway, Austria and Switzerland) and two industrial stakeholders (Germany and France).

Project period: 2022-2026

Past Research Projects

Black and Bloom logo

Black and Bloom

Black and Bloom is funded by the UK Natural Environment Research Council (NERC) Large Grant. This project aims to unravel how dark particles (black) and microbial processes (bloom) darken and accelerate the melting of the Greenland Ice Sheet.

Project period: 2016-2021


Metal-Aid (Metal oxide Aided Subsurface Remediation: From Invention to Injection) is funded by the Horizon2020 Marie Skłodowska Curie Actions Innovative Training Network (MSCA-ITN). This project aims to develop new mineral-based technologies to treat soil and groundwater contaminated with chlorinated solvents and heavy metals.

Project period: 2016-2020


MicroArctic (Microorganisms in Warming Arctic Environments) is funded by the Horizon2020 Marie Skłodowska Curie Actions Innovative Training Network (MSCA-ITN). This project aims to advance our understanding of changes and adaptation in Arctic microbial communities and their links to weathering and biogeochemical element and nutrient cycling in fast warming Arctic settings.

Project period: 2016-2020


NanoSiAl (Silica and Alumina Nanophases – The Building Blocks for the Ground under our Feet) was funded by the Horizon2020 Marie Skłodowska-Curie Actions Individual Fellowship (MSCA-IF) awarded to Dr. Tomasz M. Stawski.

Project period: 2017-2019

back to top of main content