Logo "GFZ German research centre for geo sciences"

Organic Surface Geochemistry Laboratory (OSGLab)

In the Organic Surface Geochemistry Lab (OSGLab) of the Geomorphology section the smallest of molecules and isotopes open a door to the past. In the OSGLab we conduct research on regional differences of the causes and effects of past climate change and variations in biochemical cycles. In some projects we can determine the 'traces' of climate change down to a decade, in other projects biogeochemical processes are traced over millions of years.


  • Xinxin Wang

PhD Students

Technicians and Research Assistants

  • Jasmin Jenichen

Bachelor and Master Students

  • Emily Ikawy
  • Louisa Kanis

Im neuen Labor lassen sich Veränderungen im Kreislauf des Kohlenstoffs über sogenannte Biomarker aus Pflanzen und Mikroorganismen rekonstruieren. Biomarker sind resistente organische Moleküle, die man einem Organismus zuordnen kann. Über ihre charakteristischen Strukturen zeigen sie, von welcher Pflanze oder Alge sie gebildet wurden. Pflanzenteile gelangen über Böden und Flüsse in Seen und Meere und lagern sich dort in Sedimenten ab. Über die Jahrtausende zersetzen sich die Pflanzenteile, ihre Biomarker aber bleiben zurück, sie werden sozusagen zu molekularen Fossilien. Wir beproben die Sedimente und untersuchen die darin enthaltenen Biomarker im Labor.

Automated Solid Phase Extraction (aSPE)

The total liquid extract (TLE) obtained from the sample after solvent extraction is separated into several fractions of different component compositions by automated solid-phase extraction (SPE) using a solvent gradient of different polarity. The solid phase machine (Gilson ASPEC GX-271) can be equipped with 9 samples per run, which can be separated completely automatically into up to 5 different fractions. For the separation 6 ml standard glass columns filled with up to 5.5 ml silica gel are used. The columns can be rinsed with volumes of up to 20 ml of solvent. https://doi.org/10.1016/j.orggeochem.2020.103995

Accelerated Solvent Extraction (ASE)

The extraction of biomarkers from samples/sediments is done with an Accelerated Solvent Extraction (ASE 350, ThermoFisher). In order to ensure the most effective extraction with low solvent input and varying amounts of sediment or sample, extraction cells of various sizes are available (11-60 mL). The device can be equipped with a maximum of 24 extraction cells per run.

Elemental Analyzer coupled with a Delta-V Isotope Ratio Mass Spectrometer (EA-IRMS)

For quantitative carbon and nitrogen analysis on bulk samples, a Flash Elemental Analyzer 2000 (Flash EA 2000) from ThermoFisher Scientific equipped with a Thermal Conductivity Detector (TCD) is used in the laboratory. For measurements of stable carbon (δ13C) and nitrogen isotope ratios (δ15N) on bulk samples, the Flash EA 2000 is coupled with a Delta-V isotope ratio mass spectrometer. The measurement of stable hydrogen (δ2H) and oxygen isotope ratios (δ18O) on water samples can also be carried out with the Flash EA 2000, since the device is additionally equipped with a liquid autosampler. The Flash EA 2000 water analysis is primarily used for dirty and especially saline water samples.

Gas-Chromatograph coupled with a Delta-V Isotope Ratio Mass Spectrometer (GC-IRMS)

For the component-specific analysis of stable hydrogen (δ2H) and carbon isotope ratios (δ13C) on organic molecules, a ThermoFisher Scientific gas chromatograph (Trace 1310) coupled with a Delta-V isotope ratio mass spectrometer is available in the laboratory. The device is equipped with a TriPlus RSH autosampler for liquid and headspace injections as well as a heating reservoir for local derivatization. The autosampler's bottom-sense technology allows automated injection of samples with very low component concentrations.

Gas-Chromatograph with Flame Ionization Detector (FID) and Mass Selective Detector (GC-FID-MS)

For the quantification and identification of the organic substances, an Agilent gas chromatograph (GC 7890-A) with a flame ionization detector (FID) and a coupled single quadrupole mass spectrometer (MS 5975-C) is available in the laboratory. The device has an autosampler with 100 sample slots and can be equipped with various columns at short notice according to sample-specific requirements.

Freeze Dryer

The Lab is equipped with a freeze dryer (Christ Beta 1-8 LDplus). The machine has an ice condenser capacity of 8 kg, an ice condenser temperature of -55°C and is used to remove surplus water from samples which are in preparation for Biomarker analysis.

Picarro L-2140i Ringdown Spectrometer

The measurement of stable hydrogen (δ2H) and oxygen isotope ratios (δ18O and δ17O) on water samples is performed very efficiently in the laboratory with a Picarro L-2140i Ringdown spectrometer.

Semi-Preparative High Performance Liquid-Chromatograph with Mass Selective Detector (HPLC-MS)

For the identification, separation and quantification of complex organic molecules, a semi-preparative Agilent Infinity HPLC-MS (single-quadrupole) system with either an APCI (Atmospheric Pressure Chemical Ionization) or ESI (Electro-Spray-Ionization) source is available. Via a connected fraction collector, individual molecules can be collected and concentrated separately for further analysis.


  • Goldberg, T., Hennekam, R., Wasch, L., Reichart, G.-J., Rach, O., Stammeier, J. A., Griffioen, J. (2021): Suitability of calibrated X-ray fluorescence core scanning for environmental geochemical characterisation of heterogeneous sediment cores. - Applied Geochemistry, 125, 104824. DOI: https://doi.org/10.1016/j.apgeochem.2020.104824


  • Dietze, E., Mangelsdorf, K., Andreev, A., Karger, C., Schreuder, L. T., Hopmans, E. C., Rach, O., Sachse, D., Wennrich, V., Herzschuh, U. (2020): Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El’gygytgyn sediments. - Climate of the Past, 16, 799-818. DOI: https://doi.org/10.5194/cp-16-799-2020
  • Menges, J., Hovius, N., Andermann, C., Lupker, M., Haghipour, N., Märki, L., Sachse, D. (2020): Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach. - Geochimica et Cosmochimica Acta, 286, 159-176. DOI: https://doi.org/10.1016/j.gca.2020.07.003
  • Rach, O., Hadeen, X., Sachse, D. (2020): An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. - Organic Geochemistry, 142, 103995. DOI: https://doi.org/10.1016/j.orggeochem.2020.103995
  • van der Veen, I., Peterse, F., Davenport, J., Meese, B., Bookhagen, B., France-Lanord, C., Kahmen, A., Hassenruck–Gudipati, H. J., Gajurel, A., Strecker, M. R., Sachse, D. (2020): Validation and calibration of soil δ2H and brGDGTs along (E-W) and strike (N-S) of the Himalayan climatic gradient. - Geochimica et Cosmochimica Acta, 290, 408-423. DOI: https://doi.org/10.1016/j.gca.2020.09.014
  • Voss, K. A., Bookhagen, B., Sachse, D., Chadwick, O. A. (2020): Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal. - Journal of Hydrology, 586, 124802. DOI: https://doi.org/10.1016/j.jhydrol.2020.124802


  • Aichner, B., Makhmudov, Z., Rajabov, I., Zhang, Q., Pausata, F. S. R., Werner, M., Heinecke, L., Kuessner, M. L., Feakins, S. J., Sachse, D., Mischke, S. (2019): Hydroclimate in the Pamirs Was Driven by Changes in Precipitation‐Evaporation Seasonality Since theLast Glacial Period. - Geophysical Research Letters, 46, 23, 13972-13983. DOI:  https://doi.org/10.1029/2019GL085202
  • Menges, J., Hovius, N., Andermann, C., Dietze, M., Swoboda, C., Cook, K., Adhikari, B. R., Vieth-Hillebrand, A., Bonnet, S., Reimann, T., Koutsodendris, A., Sachse, D. (2019): Late Holocene landscape collapse of a Trans‐Himalayan dryland: Human impact and aridification. - Geophysical Research Letters, 46, 23, 13814-13824. DOI:  https://doi.org/10.1029/2019GL084192
  • Scheingross, J., Hovius, N., Dellinger, M., Hilton, R. G., Repasch, M., Sachse, D., Gröcke, D. R., Vieth-Hillebrand, A., Turowski, J. (2019): Preservation of organic carbon during active fluvial transport and particle abrasion. - Geology, 47, 10, 958-962. DOI: https://doi.org/10.1130/G46442.1


  • Aichner, B., Ott, F., Słowiński, M., Noryśkiewicz, A. M., Brauer, A., Sachse, D. (2018): Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay. - Climate of the Past, 14, 11, 1607-1624. DOI: https://doi.org/10.5194/cp-14-1607-2018
  • Regenspurg, S., Alawi, M., Norden, B., Vieth-Hillebrand, A., Blöcher, G., Kranz, S., Scheytt, T., Horn, F., Burckhardt, O., Rach, O., Saadat, A. (2020): Effect of cold and hot water injection on the chemical and microbial composition of an aquifer and implication for its use as an aquifer thermal energy storage. - Geothermics, 84, 101747. DOI: https://doi.org/10.1016/j.geothermics.2019.101747
  • Jones, G., Lane, C. S., Brauer, A., Davies, S. M., de Bruijn, R., Engels, S., Haliuc, A., Hoek, W. Z., Merkt, J., Sachse, D., Turner, F., Wagner-Cremer, F. (2018): The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. - Boreas, 47, 1, pp. 28-40. DOI: http://doi.org/10.1111/bor.12250


  • Rach, O., Engels, S., Kahmen, A., Brauer, A., Martin-Puertas, C., van Geel, B., Sachse, D. (2017): Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker δD values in lake Meerfelder Maar sediments. - Quaternary Science Reviews, 172, pp. 44-54. DOI: http://doi.org/10.1016/j.quascirev.2017.07.019
  • Aichner, B., Hilt, S., Périllon, C., Gillefalk, M., Sachse, D. (2017): Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity. - Organic Geochemistry, 113, pp. 10-16. DOI: http://doi.org/10.1016/j.orggeochem.2017.07.021
  • Nelson, D. B., Knohl, A., Sachse, D., Schefuß, E., Kahmen, A. (2017): Sources and abundances of leaf waxes in aerosols in central Europe. - Geochimica et Cosmochimica Acta, 198, pp. 299-314. DOI: http://doi.org/10.1016/j.gca.2016.11.018
  • Rach, O., Kahmen, A., Brauer, A., Sachse, D. (2017): A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios. - Climate of the Past, 13, 7, pp. 741-757. DOI: http://doi.org/10.5194/cp-13-741-2017
  • Hernández, M. A., Gleixner, G., Sachse, D., Alvarez, H. M. (2017): Carbon Allocation in Rhodococcus jostii RHA1 in Response to Disruption and Overexpression of nlpR Regulatory Gene, Based on 13C-labeling Analysis. - Frontiers in Microbiology. DOI: http://doi.org/10.3389/fmicb.2017.01992
  • Vögeli, N., Najman, Y., van der Beek, P., Huyghe, P., Wynn, P. M., Govin, G., van der Veen, I., Sachse, D. (2017): Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution. - Earth and Planetary Science Letters, 471, pp. 1-9. DOI: http://doi.org/10.1016/j.epsl.2017.04.037


  • Engels, S., Brauer, A., Buddelmeijer, N., Martin-Puertas, C., Rach, O., Sachse, D., van Geel, B. (2016): Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). - Journal of Quaternary Science, 31, 7, pp. 741-752. DOI: http://doi.org/10.1002/jqs.2900
  • Engels, S., Bakker, M., Bohncke, S., Cerli, C., Hoek, W., Jansen, B., Peters, T., Renssen, H., Sachse, D., van Aken, J., van den Bos, V., van Geel, B., van Oostrom, R., Winkels, T., Wolma, M. (2016): Centennial-scale lake-level lowstand at Lake Uddelermeer (The Netherlands) indicates changes in moisture source region prior to the 2.8-kyr event. - Holocene, 26, 7, pp. 1075-1091. DOI: http://doi.org/10.1177/0959683616632890 
  • Gamarra, B., Sachse, D., Kahmen, A. (2016): Effects of leaf water evaporative 2H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2H values in C3 and C4 grasses . - Plant Cell and Environment, 39, 11, pp. 2390-2403. DOI: http://doi.org/10.1111/pce.12789
  • Hoffmann, B., Feakins, S. J., Bookhagen, B., Olen, S. M., Adhikari, D. P., Mainali, J., Sachse, D. (2016): Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal. - Earth and Planetary Science Letters, 452, pp. 104-114. DOI: http://doi.org/10.1016/j.epsl.2016.07.008
  • Jambrina-Enríquez, M., Sachse, D., Valero-Garcés, B. L. (2016): A deglaciation and Holocene biomarker-based reconstruction of climate and environmental variability in NW Iberian Peninsula: the Sanabria Lake sequence. - Journal of Paleolimnology, 56, 1, pp. 49-66. DOI: http://doi.org/10.1007/s10933-016-9890-6 
  • Nieto-Moreno, V., Rohrmann, A., van der Meer, M. T. J., Sinninghe Damsté, J. S., Sachse, D., Tofelde, S., Niedermeyer, E. M., Strecker, M. R., Mulch, A. (2016): Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes. - Earth and Planetary Science Letters, 453, pp. 234-242. DOI: http://doi.org/10.1016/j.epsl.2016.07.049
  • Rohrmann, A., Sachse, D., Mulch, A., Pingel, H., Tofelde, S., Alonso, R. N., Strecker, M. R. (2016): Miocene orographic uplift forces rapid hydrological change in the southern central Andes. - Scientific Reports, 6, 35678. DOI: http://doi.org/10.1038/srep35678
  • Wang, X., Huang, X., Sachse, D., Hu, Y., Xue, J., Meyers, P. A. (2016): Comparisons of lipid molecular and carbon isotopic compositions in two particle-size fractions from surface peat and their implications for lipid preservation. - Environmental Earth Sciences, 75, 1142. DOI: http://doi.org/10.1007/s12665-016-5960-3
  • Wang, X., Huang, X., Sachse, D., Ding, W., Xue, J., Zhu, L. (2016): Molecular Paleoclimate Reconstructions over the Last 9 ka from a Peat Sequence in South China. - Plos One, 11, 9. DOI: http://doi.org/10.1371/journal.pone.0160934


  • Olen, S. M., Bookhagen, B., Hoffmann, B., Sachse, D., Adhikari, D. P., Strecker, M. R. (2015): Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley. - Journal of Geophysical Research, 120, 10, pp. 2080-2102. DOI: http://doi.org/10.1002/2014JF003410
  • Riedel, N., Stebich, M., Anoop, A., Basavaiah, N., Menzel, P., Prasad, S., Sachse, D., Sarkar, S., Wiesner, M. (2015): Modern pollen vegetation relationships in a dry deciduous monsoon forest: A case study from Lonar Crater Lake, central India. - Quaternary International, 371, pp. 268-279. DOI: http://doi.org/10.1016/j.quaint.2015.01.046
  • Sachse, D., Dawson, T. E., Kahmen, A. (2015): Seasonal variation of leaf wax n-alkane production and δ H-2 values from the evergreen oak tree, Quercus agrifolia . - Isotopes in environmental and health studies, 51, pp. 124-142. DOI: http://doi.org/10.1080/10256016.2015.1011636
  • Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N., Sachse, D. (2015): Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. - Quaternary Science Reviews, 123, pp. 144-157. DOI: http://doi.org/10.1016/j.quascirev.2015.06.020
  • Sachse, D. (2015): Molekulare Indikatoren für die Wasser- und Kohlenstoffkreisläufe der Erde. - System Erde, 5, 1 DOI: http://doi.org/10.2312/GFZ.syserde.05.01.3


  • Menges, J., Huguet, C., Alcañiz, J. M., Fietz, S., Sachse, D., Rosell-Melé, A. (2014): Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula. - Biogeosciences, 11, pp. 2571-2581. DOI: http://doi.org/10.5194/bg-11-2571-2014 
  • Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., Alonso, R. N., Schildgen, T., Montero, C. (2014): Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth and Planetary Science Letters, 407, pp. 187-195. DOI: http://doi.org/10.1016/j.epsl.2014.09.021
  • Rach, O., Brauer, A., Wilkes, H., Sachse, D. (2014): Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. - Nature Geoscience, 7, 2, pp. 109-112. DOI: http://doi.org/10.1038/ngeo2053

back to top of main content