GFZ German research centre for geo sciences

Oxygen, Phosphorous and Early Life on Earth

Oxygen, Phosphorous and Early Life on Earth
17.11.2013 |Two billion years ago the Earth system was recovering from perhaps the single-most profound modification of its surface environments: the oxygenation of the atmosphere and oceans.  This led to a series of major changes in global biogeochemical cycles, as a team around Aivo Lepland of the Norwegian Geological Survey NGU reports in the latest online edition of “Nature Geoscience”.

Oxygen, Phosphorous and Early Life on Earth
17.11.2013 |Two billion years ago the Earth system was recovering from perhaps the single-most profound modification of its surface environments: the oxygenation of the atmosphere and oceans.  This led to a series of major changes in global biogeochemical cycles, as a team around Aivo Lepland of the Norwegian Geological Survey NGU reports in the latest online edition of “Nature Geoscience”.

This also resulted in the distribution of one of life’s key elements, phosphorous.  Studies on the unique organic-rich Zaonega rock formation preserved in Carelia, NW Russia, with an age of around two billion years has revealed an astonishing result: “The formation of Earth’s earliest phosphorites was influenced strongly, if not controlled completely, by the activity of sulfur bacteria”, says co-author Richard Wirth of the GFZ German Research Centre for Geosciences, who analyzed the rock samples with an electron microscope. “This activity occurred in an oil field setting that had been influenced by active volcanism and associated venting and seeping.” In the modern world, sulfur bacteria inhabit upwelling vent and seep areas known as “Black Smokers” and mediate phosphorite formation. The authors therefore conclude that the formation of the earliest worldwide phosphorites 2 billion years ago can be linked to the establishment of sulfur bacteria habitats, triggered by the oxygenation of the Earth.

Aivo Lepland et al.: “Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis”, Nature Geoscience Advance Online Publication, Doi 10.1038/ngeo2005

Additional News

back to top of main content