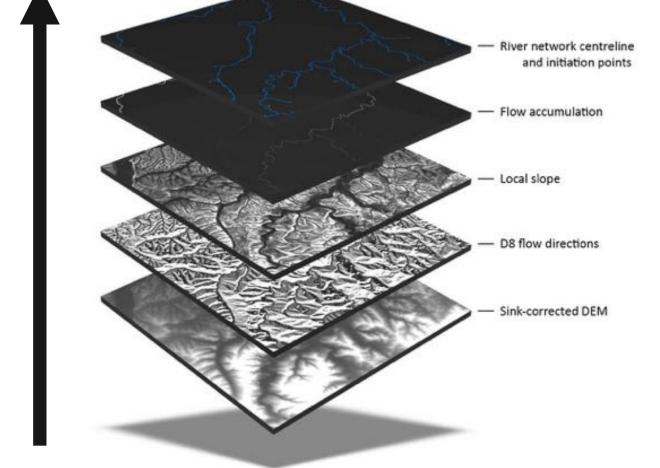


Estimation of flood-prone areas for preliminary large-scale flood risk assessment using hydro-geomorphic mapping approaches [hands-on workshop]

Ricardo Tavares da Costa


HYDRO-GEOMORPHIC METHOD An Overview

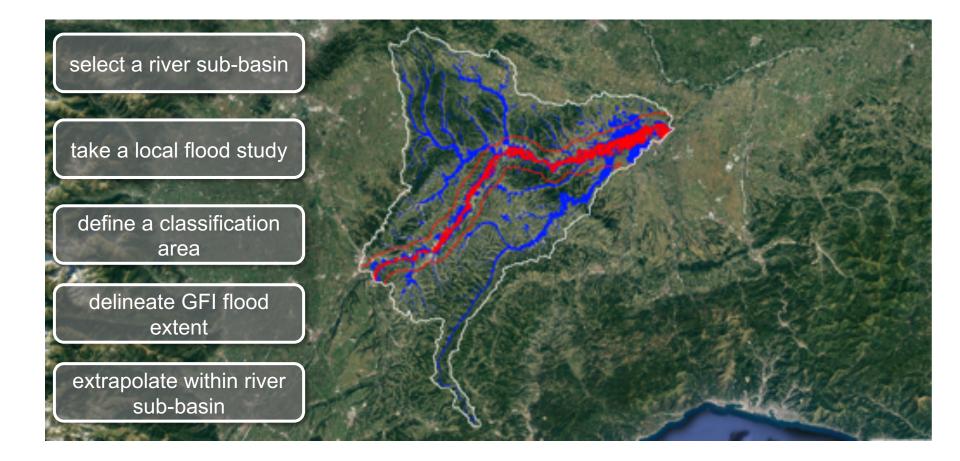
Project Title

HYDRO-GEOMORPHIC METHOD Terrain Analysis

HYDRO-GEOMORPHIC METHOD GFI Threshold Binary Classification

colour gradient represents different GFI values:

- 1 (cyan) high hazard (near the stream channel)
- 0 (dark blue) low hazard (away from the stream channel)


GFI layer (25 m) for the Severn river basin (UK) ready to reproduce the reference flood extents from a detailed flood study

> Objective Function True Skill Score, TSS=(tp*tn-fp*fn)/(tp+fn)*(fp+tn)

Benchmark flood hazard map

HYDRO-GEOMORPHIC METHOD Extrapolation and Downscaling

What you will need:

- 1. Internet connection
- 2. Google account
- 3. Link to access the notebook (provided by me)
- 4. Credentials to access the case study data

(provided by me)

HANDS-ON EXERCISE Hydrogeomorphic Mapping of Flood-Prone Areas

Objective of this workshop:

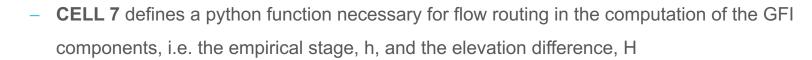
- 1. understand how to perform a hydrogeomorphic mapping of flood-prone areas by estimating the envelope of major floods based on a benchmark flood extent
- 2. understand how the methodology works in practice by following a step-by-step procedure implemented as a Google Colab notebook and applying it to a test case
- 3. compare the mapping outcomes obtained in the test case with the benchmark flood hazard maps and discuss the findings in the context of hypothetical assets

How many persons and assets do you think will be prone to flooding?

This workshop covers all steps to arrive to a final map of flood-prone areas — from preprocessing the digital elevation model (DEM) and reference flood extent, to computing the morphological descriptor, classification, mapping the flood-prone areas in the region of interest and downscaling and extrapolating the results beyond this region

HANDS-ON EXERCISE **Overview of Google Colab Notebook**

- CELL 1 installs all necessary python modules for this exercise
- **CELL 2** imports all modules
- **CELL 3** authenticates to Google Drive and loads the case study folder to the notebook environment, creating links to each file
- **CELL 4** defines a simple python function to plot images
- **CELL 5** loads and pre-processes input raster layers to start terrain analysis, namely:
- D8 flow direction model 1.
- Flow accumulation layer
- Local slope
- Benchmark flood hazard map 4.
- Assets layer for overlaying at the end 5.
- **CELL 6** computation of river network initiation points (channel initiation) by thresholding with 10⁵ the product of contributing area A with the local slope S to the power of k = 1.7


 $AS^{k} < 10^{5}$

Starting Up

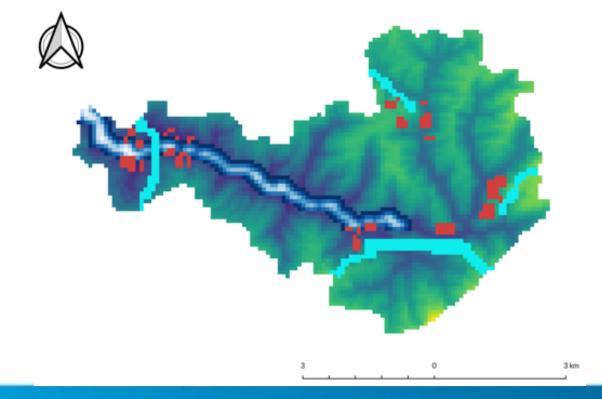
2. 3.

HANDS-ON EXERCISE Overview of Google Colab Notebook

- CELL 8 computation of river network centerline from initiation points
- CELL 9 computation of the H

Characterization

Morphologica

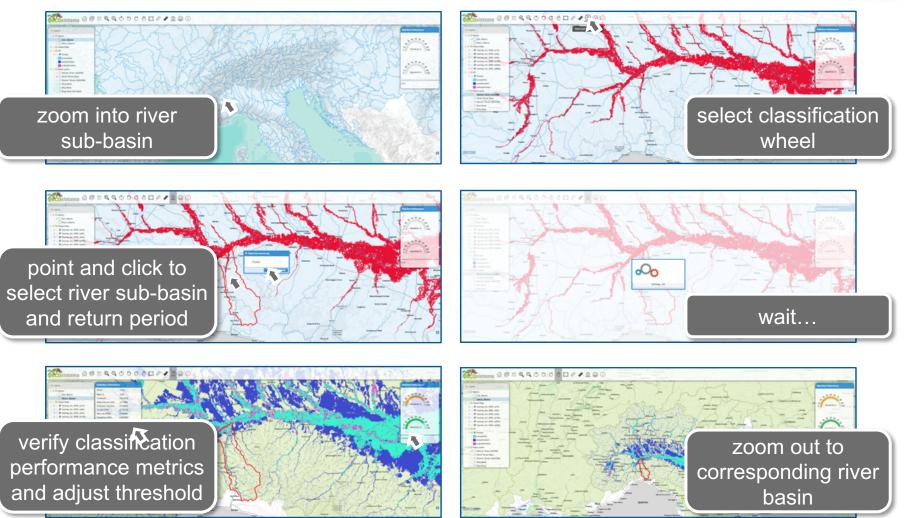

Classification

- **CELL 10** flood frequency analysis to determine bankfull depth scaling relation
- CELL 11 computation of the h
- CELL 12 computation of the GFI
- CELL 13 binarize benchmark flood hazard map
- **CELL 14** classification of flood-prone areas
- CELL 15 overlay of resulting map of flood-prone areas and the assets layer

HANDS-ON EXERCISE Case Study

- The chosen case study is a very small catchment within the Ohio river basin, US
- The benchmark flood hazard layer is obtained from the US Federal Emergency Management Agency (FEMA)
- The assets layer is completely hypothetical, all footprints of infrastructure (roads in cyan and buildings in red) represented in this layer are not real

ONLINE TOOL SmartFLOOD Platform



This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

ONLINE TOOL SmartFLOOD Platform

THANK YOU

Feel free to drop me a line anytime

Ricardo Tavares da Costa ricardotavarescosta@gmail.com

FULL PARTNERS ARE:

PARTNER ORGANISATIONS:

Risk Management Solutions Ltd. (RMS) USA

Ministry of Infrastructure and the Environment (RWS) Netherlands

Royal Netherlands Meteorological Institute (KNMI) Netherlands

Autorità di Bacino del Fiume Po – Po Basin Authority (AdB-Po) Italy

Guy Carpenter USA

Deutsche Rückversicherung AG Germany

Landesamt für Umwelt (LfU) State Office for Environment of the Federal State of Brandenburg Germany

www.system-risk.eu

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No. 676027