

ANALOGMODELLIERUNG ÜBER DIE Induzierung von Salzdiapiren durch differentielle Auflastverteilung

Diplomarbeit

vorgelegt von:

Michael Warsitzka

Friedrich-Schiller-Universität Jena

&

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ)

vorgelegt am:

29.01.2010

Gutachter:

Prof. Dr. Jonas Kley (Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Lehrstuhl für Strukturgeologie)
Dr. Nina Kukowski (Helmholtz-Zentrum Potsdam, GFZ, Department 3 Geodynamik und Geomaterialien, Sektion 3.1 Dynamik der Lithosphäre)

SELBSTSTÄNDIGKEITSERKLÄRUNG

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbstständig verfasst habe. Es wurden keine anderen als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt. Die wörtlichen oder sinngemäß übernommenen Zitate habe ich als solche kenntlich gemacht.

Ort, Datum_____

Unterschrift_____

DANKSAGUNG

An erster Stelle danke ich Herrn Professor Dr. Jonas Kley, Frau Dr. Nina Kukowski und Fabian Jähne, deren Initiative und Zusammenarbeit mir diese Diplomarbeit ermöglichte und deren Betreuung trotz teilweise großer räumlicher Distanzen ausgezeichnet war.

Viele Dankesgrüße gehen an die Arbeitsgruppe 3.1 für eine entspannte und angenehme Arbeitsatmosphäre und unterstützende Ideen. Besonders danken, möchte ich dabei Matthias Rosenau, David Boutelier und Thomas Ziegenhagen für ihre Betreuung und Hilfestellung im Analoglabor sowie Karsten Reiter für kreative Diskussionen.

Ein herzliches Dankeschön geht außerdem an die Arbeitsgruppe 4.4, insbesondere an Frau Dr. Magdalena Scheck-Wenderoth für sehr hilfreiche Gespräche über die "Welt der Salztektonik". Hervorheben möchte ich außerdem Judith Sippel für die freundschaftliche Hilfe bei der Erstellung der Diplomarbeit und das sorgfältige Korrekturlesen.

Schließlich möchte ich meinen Eltern, meinem Bruder und meinen Freunden für das Korrekturlesen und die Unterstützung außerhalb der Diplomarbeit danken.

ZUSAMMENFASSUNG

In der Diskussion um die Entstehung von Salzdiapiren existieren zwei generelle Theorien. Die erste postuliert, dass Salzgestein autonom durch den eigenen Auftrieb das überlagernde Deckgebirge durchbrechen kann (*piercing*) (TRUSHEIM, 1960). Die zweite Theorie über den reaktiven Diapirismus wurde in zahlreichen Analogexperimenten erforscht und besagt, dass ein äußeres tektonisches Spannungsfeld nötig ist, um die Festigkeit des Deckgebirges zu erniedrigen und einen Salzaufstieg zu ermöglichen (VENDEVILLE UND JACKSON, 1992).

In der hier vorliegenden Arbeit wird die erste Hypothese des aktiven Diapirismus untersucht, bei welcher Diapire ausschließlich durch sedimentäre Prozesse und ohne Einwirkung äußerer tektonischer Spannungen erzeugt werden. Dazu wurden Helmholtz-Zentrum Analogexperimente im Labor des Potsdam Deutsches GeoForschungsZentrum GFZ durchgeführt. Die auf die Natur skalierten Experimente fanden in Glasboxen mit 30 bis 2000 cm² Querschnittsfläche statt. Der Aufbau bestand aus einer viskosen Silikonöllage als Analogmaterial für Salzgestein, die von einer Schicht aus trockenem Granulat zur Simulation des spröden Deckgebirges überlagert wurde. Zur Messung und Visualisierung der Deformation in den Analogmaterialien wurde ein spezielles Kamerasystem (particle image velocimetry PIV) verwendet. Der laterale Auflastkontrast, der zur Deformation der Silikonschicht führen sollte, wurde durch Variation der Mächtigkeit oder der Dichte des granularen Materials erreicht. Nachfolgende Sedimentation von Granulat forcierte einen weiteren Silikonaufstieg.

Die Experimentergebnisse zeigen, dass bei geringen Gesamtmächtigkeiten der Sandschicht kleine laterale Auflastunterschiede genügen, um lokale Hebungen im Silikon entstehen zu lassen. Durch zusätzliches "synkinematisches" Sedimentieren von Sand in zeitgleich entstehende Senkungsbereiche (Randsenken) wird die vertikale Bewegung verstärkt, bis das Silikon schließlich die Sandschicht durchbricht und es zur Bildung eines Diapirs ("Primärdiapirs") kommt. Das Einsinken der Nachbarbereiche erzeugt einen Druckgradienten zwischen den Randsenken und den vom Primärdiapir entfernten Bereichen. Dies führt zur Entstehung von weiteren Diapiren ("Sekundärdiapiren").

Zu den im Experiment entstandenen Diapiren und den Strukturen in den synkinematisch sedimentierten Sandschichten lassen sich äquivalente Beispiele in der Natur finden (z.B. Norddeutsches Becken). Dies zeigt, dass die sedimentären Prozesse, die hier im Modell nachgestellt wurden, eine mögliche Erklärung für die Entstehung der natürlichen Strukturen bereitstellen.

ABSTRACT

In salt tectonics, two general concepts exist to explain salt diapirism. First, the theory of active piercement by TRUSHEIM (1960) states that salt rises up and pierces its overburden autonomously by buoyancy forces. Second, the theory of reactive piercement by VENDEVILLE AND JACKSON (1992A) considers a tectonic stress field responsible for initiation of salt uplift and has been tested in many analogue experiments.

In this study, we investigated the hypothesis in which salt diapir formation is activated by sedimentary processes alone, i.e. without a tectonic trigger. Our models consisted of a viscous silicone layer simulating rock salt overlain by layers of sand that mimic brittle behaviour in natural overburden sediments. The experiments were monitored with a highresolution strain analysis tool based on digital image correlation (*particle image velocimetry*, *PIV*). Deformation in the silicone layer was initiated by a lateral variation either in the thickness or in the density of the overburden, which established a differential loading on the silicone layer. Subsequent sedimentation in certain time intervals forced the silicone to rise up and break through the initial sand layer by buoyancy forces.

The model results support the hypothesis of active piercement of diapirs. Uplift of the silicone and creation of pillow structures with significant elevation can be achieved if the overburden does not exceed a critical thickness and if the load gradient in the overburden reaches a minimum value. Then, ongoing sedimentation in adjacent areas increases the lateral load gradient until the buoyancy force in the silicone is high enough to overcome the shear strength of the sand. "Synkinematic" sedimentation produces some typical strata geometries in the sand layer that can also be observed in nature, e.g. drag folds bordering the diapirs and layer thickening in the peripherical rim synclines. The development of a diapir and its peripherical leads to a lateral migration of the deformation to the adjoining areas. This, in turn, induces the generation of further diapirs in a purely "halokinetic" way. The potential to form these secondary diapirs basically depends on the thickness of the silicone layer and on the sedimentation rate. The deformation paths and the incremental strains of the experiments can be well observed with the PIV, which offers an ideal application in the analogue modelling of salt diapirism. Our experiments contribute new insights in the discussion of diapir formation. They show that sedimentary processes can initiate diapirism without any tectonic influence if the salt movement starts early after its deposition. Additionally, the model results provide a validation of the theory of "salt-stock families" in the Northwest German Basin (SANNEMANN, 1965) in the light of new analogue modelling techniques.

INHALTSVERZEICHNIS

In	haltsverz	zeichnis	I			
Abbildungsverzeichnis						
Fil	mverzei	chnis	III			
Та	bellenve	rzeichnis	<u> </u>			
Ab	Abkürzungsverzeichnis					
Sy						
1.	Einleitung					
2.	Salzgestein und Salztektonik					
	2.1.	Rheologische Eigenschaften des Salzgesteins und des Deckgebirges	3			
	2.2.	Salzstrukturen	6			
	2.3.	Theorien zur Entstehung von Salzdiapiren	7			
3.	Methodik und Versuchsdurchführung					
	3.1.	Skalierung der Analogmodelle	12			
	3.2.	Versuchsaufbau und Versuchsdurchführung	18			
	3.3.	Visualisierung und Deformationsanalyse mit dem PIV-System	22			
4.	Auswertung der Vorversuche (Versuchsreihen 1 bis 3)					
	4.1.	Versuchsbeschreibung	24			
	4.2.	Daten- und Strukturanalyse	25			
5.	Auswertung der Hauptversuche					
	5.1.	Entstehung von Primärdiapiren (Versuch 29_4)	31			
	5.2.	Entstehung von Sekundärdiapiren Teil 1 (Versuch 5_5)	36			
	5.3.	Entstehung von Sekundärdiapiren Teil 2 (Versuch 29_6)	47			
	5.4.	Berechnungen zur Dynamik der Diapirgenese	54			
6.	Einfluss verschiedener Parameter auf die Bildung von Diapiren					
	6.1.	Einfluss des initialen Auflastkontrastes im überlagernden Sand (Versuchsreihe 4)	60			
	6.2.	Einfluss der Dauer des Sedimentationsintervalls (Versuchsreihe 5)	64			
	6.3.	Einfluss der Silikonmächtigkeit Teil 1 (Versuchsreihe 6)	<u></u> 69			
	6.4.	Einfluss der Silikonmächtigkeit Teil 2 (Versuchsreihe 7)	75			
7.	Diskussion					
8.	Schlus	sfolgerung und Ausblick	92			
9.	Ouellenverzeichnis					

ABBILDUNGSVERZEICHNIS

Abb. 1.1: Evaporitvorkommen auf der Erde	1
Abb. 1.2: Beispiel eines Diapirs aus dem Norwegisch-Dänischen Becken	2
Abb. 2.1: Zusammenhang zwischen Scherfestigkeit, Scherrate und dynamischer Viskosität	4
Abb. 2.2: Sedimentdichte im Bezug zur Tiefe, durchschnittliche Sedimentdichte	5
Abb. 2.3: Typische Salzstrukturen in ihren unterschiedlichen Entwicklungsstadien	6
Abb. 2.4: Randsenken und deren Zuordnung zu verschiedenen Stadien des Diapirwachstums	7
Abb. 2.5: Entstehung einer Salzstockfamilie	8
Abb. 2.6: Verschiedene Mechanismen zur Erzeugung eines Auflastunterschiedes	9
Abb. 2.7: Abhängigkeit der Form eines Diapirs von Aufstiegrate und Sedimentakkumulationsrate	10
Abb. 3.1: links: Scherspannung am Rheometerkopf, rechts: gemessene Scherrate und Viskosität	13
Abb. 3.2: Verlauf der Scherspannung im Bezug zur Scherrate	16
Abb. 3.3: Abhängigkeit der maximalen Scherspannung τ_{max} von der Normalspannung σ_{N}	16
Abb. 3.4: Foto einer Box, die in den Experimenten verwendet wurde	19
Abb. 3.5: Prinzipieller Aufbau einer Box	20
Abb. 3.6: Skizze zur Berechnung der Wachstumsrate eines Kissens bzw. Diapirs	22
Abb. 4.1: Beispielfoto (Versuch 11_3a)	25
Abb. 4.2: Zusammenhang zwischen lateralem Dichtekontrast und Sandmächtigkeit	26
Abb. 4.3: Zusammenhang zwischen Mächtigkeitsunterschied und der Sandmächtigkeit	27
Abb. 4.4: Vergleich des Auflastkontrastes durch Relief und Dichteunterschied im Versuch 7_7a	27
Abb. 4.5: Gradueller Übergang in der Sandauflast von Außenbereich zur Schwächezone	28
Abb. 4.6: Vergleich der Breite der Schwächezonen Versuch 9_3a	29
Abb. 4.7: Gegenüberstellung von Schwächezone und Außenbereich gleicher Größe (Versuch 2_4a)	29
Abb. 5.1: (a) Profilschnitt Versuch 29_4, (b) Einsinkgeschwindigkeit (c) Wachstumsrate	33
Abb. 5.2: Diagramm der eingesiebten Sandmenge	34
Abb. 5.3: Entwicklungsstadien des Primärdiapirs Versuch 29_4	35
Abb. 5.4: Fotodokumentation des Versuchs 5_5	38
Abb. 5.5: Einsinkgeschwindigkeit und Wachstumsgeschwindigkeit Versuch 5_5	39
Abb. 5.6: Eingesiebte Sandmenge Versuch 5_5	40
Abb. 5.7: Entwicklungsstadien des Versuchs 5_5 im Profilschnitt und in der Aufsicht	41
Abb. 5.8: Gesamtdeformation im Silikon, visualisiert aus den Aufnahmen des PIV-Systems	43
Abb. 5.9: Diagramm der Vektorlänge	44
Abb. 5.10: Diagramm des vertikalen Profil Versuch 5_5	44
Abb. 5.11: Vektorgitter Versuch 5_5	45
Abb. 5.12: Entwicklungsphasen der Partikelbewegung Versuch 5_5	46
Abb. 5.13: Bewegungsrate im Versuch 5_5	47
Abb. 5.14: Profilschnitt und Detailansichten des Versuchs 29_6	48

Abb. 5.15: (a) Profilschnitt (b) Hebungs- und Senkungsbereiche (c) Strömungslinien Versuch 29_6_	50
Abb. 5.16: Entwicklung der Bewegungsvektoren im Versuch 29_6	51
Abb. 5.17: Entwicklungsphasen der Bewegung im Silikon Versuch 29_6	52
Abb. 5.18: Entwicklung der Bewegungsrate im Versuch 29_6	53
Abb. 5.19: Skizzen der Kräfte, die eine Deformation im Silikon auslösen	55
Abb. 5.20: Skizzen der Kräfte, die einer Deformation im Silikon entgegenwirken	56
Abb. 6.1: Diagramme der eingesiebten Sandmenge	61
Abb. 6.2: Einsinkrate und Wachstumsgeschwindigkeit	62
Abb. 6.3: Profilschnitte der Versuchsreihe 4	63
Abb. 6.4: Eingesiebten Sandmenge und Einsinkgeschwindigkeit Versuchsreihe 5	65
Abb. 6.5: Gesamtdeformation aus den PIV-Aufnahmen der Versuchsreihe 5	66
Abb. 6.6: Diagramm der Bewegungsraten Versuchsreihe 5	67
Abb. 6.7: Profilschnitte der Versuchsreihe 5	67
Abb. 6.8: Verhältnis aus Wachstumsrate und Sedimentationsrate	68
Abb. 6.9: Einsinkrate und eingesiebte Sandmenge Versuchsreihe 6	70
Abb. 6.10: Diagramm der Bewegungsrate in Versuchsreihe 6	71
Abb. 6.11: Gesamtdeformation Versuchsreihe 6	72
Abb. 6.12: Profilschnitte Versuchsreihe 6	73
Abb. 6.13: Rissbildung in der Sandschicht	74
Abb. 6.14: (a) Einsinkgeschw. (b) Wachstumsgeschw. (c) Sandmenge (d) Bewegungsrate VR 7	76
Abb. 6.15: Entwicklung der Deformationszonen Versuchsreihe 7	77
Abb. 6.16: Profilschnitte Versuchsreihe 7	79

FILMVERZEICHNIS (ANHANG CD)

Film 5.1: Film_Versuch_5_5

- Film 5.2: Film_Versuch_29_6_a
- Film 5.3: Film_Versuch_29_6_b
- Film 6.1: Film_Versuch_14_5_a
- Film 6.2: Film_Versuch_14_5_b
- Film 6.3: Film_Versuch_19_5
- Film 6.4: Film_Versuch_15_6
- Film 6.5: Film_Versuch_11_6
- Film 6.6: Film_Verscuh_23_6a
- Film 6.7: Film_Versuch_23_6b
- Film 6.8: Film_Versuch_6_7

TABELLENVERZEICHNIS

Tab. 2.1 : Deformationsraten im Salz in unterschiedlichen Gebieten	11
Tab. A3.1: Viskositätsmessung des Silikons mit dem Rheometer (Anhang CD)	
Tab. 3.1 Vergleichstabelle der skalierten Parameter im Modell und im Prototyp	14
Tab.: 3.2: Materialparameter der verwendeten granularen Medien	17
Tab. A3.2: Messungen der Reibungseigenschaften der granularen Medien (Anhang CD)	
Tab. 3.3: Liste aller verwendeten Abmessungen der Größen aus Abb. 3.6	20
Tab. A4.1: Vorversuchsreihen 1 bis 5 (Annang CD) Tab. 5.1: Initiale Parameter des Versuchs 29_4	32
Tab. 5.2: Initiale Parameter des Versuchs 5_5	37
Tab. 5.3: Initiale Parameter des Versuchs 29_6	48
Tab. 5.4: Parameter des Beispielsversuchs 29_4	58
Tab. 6.1: Initiale Parameter der Versuchsreihe 4	60
Tab. 6.2: Initiale Parameter der Versuchsreihe 5	64
Tab. 6.3: Initiale Parameter der Versuchsreihe 6	70
Tab. 6.4: Initiale Parameter der Versuchsreihe 7	75

Tab. A7.1: Skalierung der Deformationsrate und der Dauer Diapirwachstum (Anhang CD)

ABKÜRZUNGSVERZEICHNIS

NDB	-	Norddeutsches Becken
OTB	-	Ost-Texas-Becken
PKB	-	Prikaspisches Becken
RS	-	Randsenke
SI	-	Sedimentationsintervall
VR	-	Versuchsreihe
WR	-	Wachstumsrate

Symbolverzeichnis

γ	-	Scherrate [s ⁻¹]
$H_{\rm l}/h_{\rm l}$	-	Mächtigkeit des Granulats über der Schwächezone [mm]
H_2/h_2	-	Mächtigkeit des Granulats außerhalb der Schwächezone [mm]
η	-	dynamische Viskosität [Pa*s]
m	-	Mächtigkeit des Silikons [mm]
μ	-	interner Reibungskoeffizient
ν	-	Fließgeschwindigkeit [mm*s ⁻¹]
$\Delta P_{\rm A}$	-	Druckgradient durch Auflastunterschied [Pa]
$\mathbf{P}_{\mathbf{B}}$	-	Auftrieb (buoyancy)[Pa]
P _C	-	residualer Auftrieb bei Kissenbildung [Pa]
ρ	-	Dichte [kg*m ⁻³]
σ	-	Normalspannung [Pa]
τ	-	Scherspannung [Pa]
υ	-	Sedimentationsrate [s ⁻¹]
t	-	Zeit [s]
φ	-	interner Reibungswinkel [°]
х	-	Schichtmächtigkeit des Granulats [mm]
X	-	Wachstumsgeschwindigkeit des Diapirs [mm*s ⁻¹]