Freie Universität Berlin Institut für Geologische Wissenschaften

Diplomkartierung und -arbeit

Einfluss des Lockne Impaktkraters auf das lokale und regionale Deformationsfeld während der Kaledonischen Orogenese

Teil A: Strukturgeologische Kartierung im Westteil des Lockne Impaktkraters, Mittelschweden Teil B: Einfluss kleinskaliger Reibungsheterogenitäten auf die Entwicklung von Vorlandüberschiebungsgürteln

vorgelegt von:	Franziska Kiebach
Erstgutachter:	PD Dr. Thomas Kenkmann, Humboldt Universität
Zweitgutachterin:	Dr. Nina Kukowski, GeoForschungsZentrum Potsdam
vorgelegt am:	06.01.2009

Inhaltsverzeichnis

Eidesstattliche Erklärung	
Abbildungsverzeichnis	
Tabellenverzeichnis	
Filmverzeichnis (CD)	
CD-Verzeichnis	
	I Einleitung

1. Einleitung

II Teil A: Strukturgeologische Kartierung im Westteil des Lockne Impaktkraters, Mittelschweden

2. Zielsetzung der strukturgeologischen Kartierung2
3. Lage des Impaktkraters und Arbeitsmethoden
3.1. Lage und Geographie
3.2. Arbeitsmethoden
4. Impaktgeologie7
4.1. Kontakt-und Kompressionsphase9
4.2. Exkavationsphase10
4.3. Modifikationsphase12
5. Geologie Schwedens
6. Kaledonische Orogenese
7. Geologie des Lockne Kraters
8. Gesteinseinheiten
8.1. Präimpaktgesteine27
8.1.1. Revsundgranit27
8.1.2. Dolerit
8.1.3. Alaunschiefer
8.1.4. Töyen Schiefer
8.1.5. Orthoceratitenkalkstein
8.2. Impaktgesteine
8.2.1. Tandsbyn Brekzie35

8.2.2. Lockne Brekzie	
8.2.3. Loftarsten	
8.3. Postimpaktgesteine	41
8.3.1. Dalby Kalkstein	41
8.4. Quartärgeologie	43
9. Tektonik	44

III Teil B: Einfluss kleinskaliger Reibungsheterogenitäten auf die Entwicklung

von

Vorlandüberschiebungsgürteln

10. Zielsetzung der Diplomarbeit	49
11. Mechanisches Konzept	50
11.1. Elasto-plastische Deformation und das Mohr-Coulomb'sche Bruchkriterium	51
11.2. Die Theorie kritischer Keile	53
12. Analogsimulation	56
12.1. Skalierung von Analogexperimenten	57
12.2. Grenzen der Analogsimulation	58
12.3. Materialeigenschaften	59
12.4. Prinzipieller Experimentaufbau	61
12.4.1. Versuchsaufbau – 2D-Serie	61
12.4.2. Versuchsaufbau – 3D-Serie	64
13. Analysemethoden	67
13.1. Deformationsanalyse mittels digitaler Bildsequenzen	67
13.2. Deformationsanalyse mittels Particle Imaging Velocimetry (PIV)	69
14. Versuchsbeobachtung (2D-Serie)	70
14.1. Referenzversuch mit schwachem Abscherhoriont	70
14.2. Referenzversuch mit starkem Abscherhorizont	76
14.3. Analogsimulation mit starker Reibungsheterogenität	82
14.4. Analogsimulation mit schwacher Reibungsheterogenität	89
15. Versuchsbeobachtung (3D-Serie)	96
15.1. Versuch 3D_18-06	96
15.2. Versuch 3D_18-09	99
16. Zusammenfassung, Vergleich und geodynamische Interpretation der Experimente	.102

IV Diskussion und Schlussfolgerung

17. Diskussion und Schlussfolgerung	105
17.1. Radiale Rückspülrinnen oder spätere Verstellung der Schichten?	105
17.2. Einfluss der Kaledoniden auf den Lockne Krater	107
17.3. Strukturelle Entwicklung in Folge des Lockne Impaktkraters	109
Literaturverzeichnis	110

Anhang

Aufschlusspunktetabelle Messwerttabelle Tektonische Karte mit Aufschlüsse Geologische Karte Übersicht zu den gemachten Versuchen CD

Abbildungsverzeichnis

Abb. 3.1: Übersichtskarte	3
Abb. 3.2: Einteilung der Gebiete und geologische Karte	5
Abb. 4.1: Kompressionsphase und Exkavationsphase eines modellierten Impakts	7
Abb. 4.2: Ausbreitung der Schockwellen während des Kontakt- und Kompressionsstadiums	9
Abb. 4.3: Wachstum eines Impakts	10
Abb. 4.4: "overturned flap"	10
Abb. 4.5: Kraterformen	12
Abb. 5.1: Das Baltische Schild und deren Gesteine	14
Abb. 6.1: Paleogeographische Karte des Silur.	16
Abb. 6.2: Plattentektonik der Kaledoniden	17
Abb. 6.3: Tektonisch-stratigraphische Karte der skandinavischen Kaledoniden	18
Abb. 7.1: Geologische Karte des Lockne Kraters	22
Abb. 7.2: Topographie des Lockne Kraters	23
Abb. 8.1: Präimpaktäre, impaktäre und postimpaktären Gesteine im Kartiergebiet	26
Abb. 8.2: Revsundgranit	28
Abb. 8.3: Dünnschliff Dolerit	29
Abb. 8.4: Alaunschiefer mit Pyritknolle	30
Abb. 8.5: Graptolith im Töyen Schiefer	31
Abb. 8.6: Tektonisch beanspruchter Orthoceratitenkalksteinaufschluss	32
Abb. 8.7: Stratigraphische Einteilung der Präimpakt-Sedimentation	33
Abb. 8.8: Holen Kalkstein mit Orthoceratiten	34
Abb. 8.9: Dünnschliff Orthoceratitenkalkstein	34
Abb. 8.10: Dolerit in Alaunschiefer "gebettet"	35
Abb. 8.11: Tandsbyn Brekzie mit "fitting" Gefüge	35
Abb. 8.12: Monomikte Tandsbyn Brekzie	36
Abb. 8.13: Dünnschliff Tandsbyn Brekzie	36
Abb. 8.14: Stark verwitterter Lockne Brekzie	37
Abb. 8.15: komponentengestützte Lockne Brekzie	37
Abb. 8.16: Graduierung in der Lockne Brekzie	38
Abb. 8.17: Dünnschliff einer komponentengestützten Brekzie	38
Abb. 8.18: Loftarsten	39
Abb. 8.19: Loftarsten mit Granit	39
Abb. 8.20: Dünnschliff Loftarsten mit Fließgefüge	40

Abb. 8.21: Dalby Kalkstein im kleinen Steinbruch am Ynntjärnen	41
Abb. 8.22: Cystoidea im Dalby Kalkstein	41
Abb. 8.23: Dalby verfaltet	42
Abb. 8.22: Geschiebe südlich von Tand	43
Abb. 9.1: Profil C-D	44
Abb. 9.2: Bahnprofil (Profil A-B) südlich des Yntjärnen	45
Abb. 9.3: Schichteinfallen der Lockne Brekzie	46
Abb. 9.4: Lagerung des Orthoceratitenkalksteins	46
Abb. 9.5: Orientierung des Dalby Kalksteins	47
Abb. 9.6: Tektonische Karte mit Lage der Profile	48
Abb. 11.1: Das Mohr-Coulomb'sche Bruchkriterium	51
Abb. 11.2: Spannungs- Deformationskurve verschiedener Materialien	52
Abb. 11.3: Bulldozermodell eines konvergenten Keils	53
Abb. 11.4: Stabilitäts-Diagramm eines konvergenten Keils	54
Abb. 12.1: Prinzip des Ringschergerätes	59
Abb. 12.2: Schematisierte Darstellung des Experimentsaufbaus (2D-Serie)	62
Abb. 12.3: Experimentbezeichnung und schematisierter Versuchsaufbau der 2D-Serie	63
Abb. 12.4: Schematisierte Darstellung des Experimentsaufbaus (3D-Serie)	64
Abb. 12.5: Experimentbezeichnung und schematisierter Versuchsaufbau der 3D-Serie	65
Abb. 13.1: Messung der Spacings	67
Abb. 13.2: Messung der Überschiebungsfront im Abstand zur Rückwand	68
Abb. 13.3: Messung des Hangwinkels	68
Abb. 14.1: Schematischer Versuchsaufbau des Referenzversuchs mit schwachem Abschen	horizont
(2D-Serie)	70
Abb. 14.2: Überschiebungen des Akkretionskeils im Referenzversuch mit schwachem	
Abscherhorizont (2D-Serie)	70
Abb. 14.3: Überschiebungsaktivitäten im Referenzversuch mit schwachem Abscherhorize	ont71
Abb. 14.4: Histogramme der Überschiebungsaktivität und des spacing	72
Abb. 14.5: Öffnungswinkel der Referenzversuche mit schwachem Abscherhorizont	73
Abb. 14.6: Lage der Überschiebungsfront im Referenzversuch mit schwachem Abscherho	prizont73
Abb. 14.7: Raum-Zeit-Diagramme im Referenzversuch mit schwachem Abscherhorizont	74
Abb. 14.8: Strukturevolution des Versuchs 2D_18-13	75
Abb. 14.9: Schematischer Versuchsaufbau des Referenzversuchs mit starkem Abscherhor	izont (2D-
Serie)	76

Abb. 14.10: Überschiebungen des Akkretionskeils im Referenzversuch mit starkem

Abscherhorizont (2D-Serie)	76
Abb. 14.11: Überschiebungsaktivitäten im Referenzversuch mit starkem Abscherhorizont	77
Abb. 14.12: Histogramme der Überschiebungsaktivität und des spacing	78
Abb. 14.13: Öffnungswinkel der Referenzversuche mit starkem Abscherhorizont	79
Abb. 14.14: Lage der Überschiebungsfront im Referenzversuch mit starkem Abscherhorizont	79
Abb. 14.15: Raum-Zeit-Diagramme im Referenzversuch mit starkem Abscherhorizont	80
Abb. 14.16: Strukturevolution des Versuchs 2D_18-17	81
Abb. 14.17: Schematischer Versuchsaufbau der Analogsimulation mit starker	
Reibungsheterogenität (2D-Serie)	82
Abb. 14.18: Überschiebungen des Akkretionskeils in der Analogsimulation mit starker	
Reibungsheterogenität (2D-Serie)	82
Abb. 14.19: Überschiebungsaktivitäten in der Analogsimulation mit starker	
Reibungsheterogenität	83
Abb. 14.20: Histogramme der Überschiebungsaktivität und des spacing	84
Abb. 14.21: Öffnungswinkel der Analogsimulation mit starker Reibungsheterogenität	86
Abb. 14.22: Lage der Überschiebungsfront in der Analogsimulation mit starker	
Reibungsheterogenität	86
Abb. 14.23: Raum-Zeit-Diagramme in der Analogsimulation mit starker Reibungsheterogeni	tät87
Abb. 14.24: Strukturevolution des Versuchs 2D_18-26	88
Abb. 14.25: Schematischer Versuchsaufbau der Analogsimulation mit schwacher	
Reibungsheterogenität (2D-Serie)	89
Abb. 14.26: Überschiebungen des Akkretionskeils in der Analogsimulation mit schwacher	
Reibungsheterogenität (2D-Serie)	89
Abb. 14.27: Überschiebungsaktivitäten in der Analogsimulation mit schwacher	
Reibungsheterogenität	90
Abb. 14.28: Histogramme der Überschiebungsaktivität und des spacing	91
Abb. 14.29: Öffnungswinkel der Analogsimulation mit schwacher Reibungsheterogenität	93
Abb. 14.30: Lage der Überschiebungsfront in der Analogsimulation mit schwacher	
Reibungsheterogenität	93
Abb. 14.31: Raum-Zeit-Diagramme in der Analogsimulation mit schwacher	
Reibungsheterogenität	94
Abb. 14.31: Strukturevolution des Versuchs 2D_18-21	95
Abb. 15.1: schematischer Versuchsaufbau des Versuchs 3D_18-06	96
Abb. 15.2: Schräge Aufsicht auf das Versuchsmodell	97
Abb. 15.3: abgeleitetes kinematisches Modell im Hangenden des Abscherhorizonts	97

Abb. 15.4: Strukturevolution des Versuchs 3D_18-06	98
Abb. 15.5: schematischer Versuchsaufbau des Versuchs 3D_18-09	99
Abb. 15.6: Schräge Aufsicht auf die Silikonschicht	
Abb. 15.7: abgeleitetes kinematisches Modell im Liegenden des Abscherhorizonts	100
Abb. 15.8: Strukturevolution des Versuchs 3D_18-09	101
Abb. 16.1: Lage der Überschiebungsfront im Vergleich Referenzversuch zu Analogsimu	lationen
mit Reibungsheterogenitäten	
Abb. 17.1: Rückspülrinnen (resurge gullies)	105
Abb. 17.2: Rosen- Diagramm	106
Abb. 17.3: Schichtanschnitt im Dalby Kalkstein	106
Abb. 17.4: Topographie der subkambrischen Peneplain und dem Alaunschiefer	107

Tabellenverzeichnis

Tabelle 12.1: Physikalische Eigenschaften der verwendeten Materialien	60
Tabelle 13.1: In den Simulationen verwendete Bild- und Korrelationsparameter	69

Filmverzeichnis

PIV-Film des Versuchs 2D_18-15 PIV-Film des Versuchs 2D_18-19 PIV-Film des Versuchs 2D_18-22 PIV-Film des Versuchs 2D_18-27

CD-Verzeichnis

PIV-Filme

- Messdaten: 1. Spacing
 - 2. Störungsaktivität
 - 3. Überschiebungsfronten
 - 4. Winkel