FRIEDRICH-SCHILLER UNIVERSITÄT JENA - GEOFORSCHUNGSZENTRUM POTSDAM

Diploma Thesis

Fault Propagation in mechanically layered Media

Insights from scaled extensional analog Models

André Clauß

November 2009 - April 2010

supervised by Prof. Dr. Jonas Kley and Prof. Dr. Nina Kukowski

This work gives an overview over spatiotemporal nucleation and propagation of fault zones in extensional tectonic settings. To achieve this a series of simple mechanically layered analogue experiments were exposed to extension and recorded with a Particle Image Velocimetrie system. Later vector analysis of the recorded images is used to visualize both the spatial distribution and overall shape of faults but also the temporal distribution of fault activity phases. Investigated were the influence of differing material parameters, different kinematic and different experimenters.

List of Figures

2.1	overview over the three basic fault types, strike-slip fault shown as sinistral	11
2.2	stress components on the surfaces of an arbitrary cubic volume $\ldots \ldots$	12
2.3	rearranging of the original coordinate system (xyz) to parallel (x'_1, x'_2, x'_3)	
~ .	to the principal stresses $(\sigma_1, \sigma_2, \sigma_3)$	12
2.4	stress ellipsoid spanned by the three principal stress axes, ellipses show	
~ ~	the intermediate stress	12
2.5	stress components on an arbitrary surface p (here rotated 30° counter-	10
0.0	clockwise)	13
2.6	normal-shear-stress diagram showing shear and normal stress pairs for	10
0.7	every possible orientation of a surface p (Mohr diagram)	13
2.7	Monr diagram with Monr-Coulomb criterion and stress condition to acti-	14
		14
3.1	isometric sketch of the graben box, the bounding glass panes are omitted	16
3.2	isometric sketch of the pure extension box, the bounding glass panes are	
	omitted	17
3.3	figure of the basic layout as well as layouts 1 to 4, red lines denote marker	
	layers, F denotes functional layers, height is properly scaled	20
3.4	due to the forced angle of 90 $^\circ$ the infill exerts a force on the glass panes $% 10^{\circ}$.	21
11	ning sheep tester DCT 01 no by Dr. Ing. District Schulge	กา
4.1	fing shear tester RS1-01.pc by D1ing. Dietinal Schulze	_∠ə
4.2	shear lead to time plot showing the three parameters peak stable dynamic	20
4.0	and stable static	25
		20
5.1	image correction with calibration board in DaVis 7.2	28
5.2	schematic of the cross-correlation process to deduce displacement vectors	29
5.3	Mask dialog in DaVis 7.2, lower left window is the source, lower right is	
	image with applied mask (grey areas = 0 intensity) $\ldots \ldots \ldots \ldots$	31
5.4	Cross-correlation processing in DaVis, lower left window shows original	
	data, lower right window shows calculated parameters, in this case E_{yx}	33
61	cross-correlated image of experiment B 01 colored areas show areas of	
0.1	strain	35
6.2	sketch showing the rapid propagation of main faults in the initial unstable	00
	phase	35
	•	

6.3	short lived branch of right main fault (large space dotted red line) parallel active to straight segment (continuous and small space dotted red lines).	37
6.4	different propagation speed (arrows) between the segment below the glass	20
65	layer and above	39 40
0.5 6 6	sketch showing the secondary antithetic fault fixed to the base contact of	40
0.0	the hanging wall sugar layer for experiments $S_{-}01$	43
6.7	sketch showing the strong increase in dip above the upper sugar layer in experiment S_03_01 as well as the new segment forming with similar dip to lower fault segment	44
6.8	sketch showing the segment hinge at the top of the lower bed glass layer (arrow)	49
6.9	sketch showing the blind synthetic normal fault in experiment S_G_01 \ldots	50
6.10	sketch showing the branched antithetic normal fault in experiment S_G_0	51
6.11	first stable main fault replaced by shallower fault, note that transfer of	
0.10	displacement occurs progressively downwards	52
6.12	sketch showing the overlap of the two initial left main faults in B_01_PE,	59
6 1 3	sketch showing the replacement of the initial right main fault of B 01 PE	99
0.10	by a antithetic fault of the left main fault through displacement transfer	
	from the singularity upwards	54
6.14	sketch showing both the antilistric left main fault as well as the segmen-	
	tation of the right main fault of experiment B_02b_PE $\hfill \ldots \ldots \ldots$.	55
6.15	sketch showing both the branched left main fault as well as the bisected	
	right main fault	59
6.16	drawing showing the end state of experiment $G_01_02_PE$ of note is the	co
6 17	upwards branched left main fault in experiment C 02 01 PE	00 61
6.18	sketch showing both the shallow fault branches parallel to the deforming	01
0.10	glass laver	62
6.19	sketch showing both the branched left mainf fault as well as the overlap-	
	ping segments of the right main fault in experiment $G_03_02_PE$	63
6.20	sketch showing the three generations of right main faults in experiment	
	$S_04_02_PE$ in red dotted lines, the faults are younger inside the graben .	65
6.21	sketch showing the branched left normal fault of experiment F_01_01_PE .	67
6.22	sketch showing the short lived but highly active vertical segment of the	79
6 23	sketch showing the two parallel antithetic faults (blue) of the $G S PE$	12
0.20	experiments, note the segmentation of the right main fault	73
6.24	sketch showing the dissected right main fault (I-III) and the triangular	
	inert zone at the graben base (right of III) at the end of experiment	
	G_F_01_PE	74
6.25	sketch showing both the initial listric left main fault and the branched	
	right main fault of experiment S_F_01_PE	75

List of Tables

3.1	systematic designation of the conducted one material experiments, following the designation principle of $M_k_e_b$	18
4.1 4.2	material properties for used lab materials, ρ - density, μ - coefficient of internal friction, ϕ - angle of internal friction, C - cohesion Values of μ , ϕ and C for different rock types [SCHELLART, 2000]	24 26
$5.1 \\ 5.2$	parameters of PIV-recording and experiments during recording Overview over the cross correlation parameter as used in this series	$28 \\ 31$

Contents

1	Intro	oduction	7
2	Fau	t nucleation theory	8
3	Exp 3.1 3.2	erimental setup Setup of experimental boxes Layout and material of experiments 3.2.1 Friction Infill - bounding glass panes	15 15 16 18
4	Mat	erial properties Differences ideal Mohr-Coulomb Material – used lab materials	22 25
	T .1		20
5	Part	icle Image Velocemitry	27
	5.1	Experimental PIV setup	27
		5.1.1 Recording parameters	27
	5.2	Cross-correlation	29
		5.2.1 DaVis Cross-correlation parameters	30
	5.3	Derived parameters	32
6	Exp	eriment results	34
	6.1	Preset Master fault	34
		6.1.1 basic layout \ldots	34
		6.1.2 glass beads \ldots	36
		6.1.3 crystal sugar	41
		6.1.4 sand-starch mix	45
		6.1.5 glass beads and crystal sugar	46
		6.1.6 glass beads and sand-starch mix	46
		6.1.7 sand-starch mix and crystal sugar	47
	6.2	Pure extension	47
		6.2.1 Basic layout	47
		6.2.2 Glass beads	50 64
		6.2.4 cond starsh mix	04 66
		6.2.5 glass boods and arrital sugar	00 60
		6.2.6 glass beads and sand starch mix	09 70
		6.2.7 sand-starch mix and crystal sugar	70
		0.2.1 Sand-Starth mix and crystal sugar	11